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Local vs Average Behavior on Inhomogeneous Structures: Recurrence on the Average
and a Further Extension of Mermin-Wagner Theorem on Graphs
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Spontaneous breaking of a continuous symmetry cannot occur on a recursive structure, where a
random walker returns to its starting point with probability= 1. However, some examples showed
that the inverse is not true. We explain this by further extension of the previous theorem. Indeed, even
if F < 1 everywhere, its average over all the points can be 1. We prove that even omgbasive on
the averagestructures the average spontaneous magnetizatior(;of and Heisenberg models is always
0. This difference between local and average behavior is fundamental in inhomogeneous structures and
requires a “doubling” of physical parameters such as spectral dimension and critical exponents.

PACS numbers: 64.60.Cn, 47.53.+n, 75.10.-b

It is well known that large scale geometry deeply af- In this Letter we prove a further generalization of
fects the universal behavior of critical systems. RenorMWT, including the previous one, explaining all known
malization group theory allows us to understand how thicounterexamples and suggesting a different definition of
happens for statistical models on regular lattices and pref, that can be shown to be equivalent to the fracton
dicts that the Euclidean dimension is the only relevandimension, eliminating many troubles arising from the
geometrical parameter in determining universality classegrevious one.

The situation is not so clear when we are dealing with The fundamental concept we introduce here, i.e., re-
geometrical structures without translational invariancecurrence on the average, is only one aspect of a much
such as disordered lattices, fractals, polymers, amorphousore general phenomenon happening on infinite inhomo-
materials, or, in general, graphs. In particular we dogeneous systems. In fact, on infinite geometrical struc-
not know yet which anomalous dimension (if any) is thetures where not all sites are equivalent to each other, the
equivalent of Euclidean dimension for lattices. average over all sites of a local quantitya; can show

Recently [1,2] it has been shown that the critical behaveompletely different properties with respect to each
ior of continuous symmetry models on graphs is related td his is the case for the probability; in the above men-
the much simpler problem of random walks (RW). Indeedtioned counterexamples. In fact, everFif < 1 for each
such models cannot have spontaneous symmetry breakingF; can be arbitrarily close to 1, which is an accumula-
(SSB) at any finite temperature if simple nearest neighbor8on point for theF;. If it is the only accumulation point,
RW without traps on the same graph are recursive, i.e., iit follows that the mean valué' of F; is exactly 1 [11].
the probabilityF; of ever returning to the starting site is 1 WhenF = 1 we shall call RW and the graph where they
for each point. Since on regular lattices RW are recursiveare definedrecursive on the averagéROA). Usual re-
in 1 and 2 dimensions, this result includes the well knowncursive structures are also ROA, so that all properties we
Mermin-Wagner theorem (MWT) [3], according to which shall prove for ROA also hold for them.
no spontaneous breaking of a continuous symmetry is pos- In the following we shall prove that on ROA structures
sible on 1 and 2 dimensional lattices. Moreover, since th&(n) and quantum Heisenberg ferromagnetic models
long time behavior of RW probability of returning to the cannot show spontaneous average magnetization at any
origin allows us to define an anomalous dimensiaralled  finite temperature. Since we shall use the same notation
spectral dimension4,5] equal to the Euclidean onkon  and some results of Ref. [1], here we briefly recall the
lattices and=2 for recursive graphs, it seemed likely that mathematical setting of the problem already presented
d could be the right generalization dfto graphs. In ad- there.
dition, it is established that MWT can be inverted, i.e., on Our discrete structure is described by an infinite graph
lattices continuous symmetries are always spontaneousty. We need an infinite network in order to allow, in
broken ind > 2 [6]. Thus one would expect the same principle, SSB. This graph is the limit of a sequence of
should happen for graphs witth > 2, i.e., ontransient finite subgraphs chosen in such a way that every bond of
graphs, wheré’; < 1 for eachi. G does not belong only to a finite humber of subgraphs

However, an infinite class of counterexamples has beeim the sequence. This is the usual and correct way used
found containing transient fractals with arbitrary large in mathematical literature to recover the thermodynamic
and showing no SSB [2,7—10]. This fact shows that thdimit. A particular choice of subgraphs, consisting of
previous generalization of MWT cannot be inverted andfixing an origin pointO and taking all sphere subgraphs
thatd is not a satisfactory generalization a&f with center O (set of points and bonds at a chemical
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distance fromO less than a fixed one), gives a more Sii(h) = Jij ®)

familiar picture for physicists, recalling the Van Hove Y h+d’

thermodynamic limit. Notice that it can be easily proven . e

that the final result is independent Of as well as of the and a decay or trapping probability agiven by

site ordering in each sphere subgraph. =1 - di ©)
Therefore we start with a generic subgraph in the pi di + h’

sequence, i.e., a finite connected graphconsisting of

N sitesi = 1,...,N and of bonds(i, j} joining them;  gjie ; and F,(1:4) the probability of returning ta for
we say that two sites and j connected by a bond are e first time after steps, with hopping probabilities (8).
nearest neighbors. The graph topology is described by 'tﬁnroducing the generating functiof§A) = 3, A' £(r),
adjacency matriA, whose elements are given by we have [12] =

Call P;;(¢; h) the probability of returning to the starting

1
1 = Fu(xh)
Now F; = F;;(A=1) represents the total probability of
returning toi at any time. IfF; =1 for a sitei, then

n n
H = _Z Z ol Jjol — Z Z htol (2) Fj=1 for every sitej. In this case RW are called
ij u—1 i el recursive.

with the spin components satisfying the constraint In Ref. [1] we obtained the inequality

< oot =1 3 a4 <mi1~)ii(1;h)>2g _
; 3) Bl =D “Fatiie = (11)

A = 1 if i andj are nearest neighbars (1) _
i 0 if i and;j are not nearest neighbors Pii(Ah) =

We now consider a(n) model (n = 2) on G defined
by the Hamiltonian

(10)

and with the ferromagnetic couplings holding for every subgraply and so also for the infinite

7. = J“{Z 0 ifA;=0, ) graph G, with {f)¢ = limy_. N"'3¥ ;. Here and
Vo >0 if Ay =1 in the following, limy_.. means we are taking the limit
according to the above mentioned Van Hove sequence.
If we introduce the further constraints on the positiveln this way we avoid any ambiguity about its uniqueness.

couplings In general, for simplicity sake, we are assuming that all
Jij=d>0, (5) the limits exist. From a more formal point of view,
' one should work with “limsup” instead of “lim” in the
d; = Zjij =J<w (6)  €enumerator of (11); the final result concerning the absence
B of spontaneous average magnetization holds in both cases.
for each bond{i, j} and each site of G, all results _ When RW without traps are recursive, from (10)

will depend only on graph topology and not on thePi(A = 1;h — 0) — o and this fact and (11) allow us
particular distribution ofJ;;}. If we allow 0 or = to be 0 €xtend the MWT to recursive graphs [1].

accumulation points for th§/;;} distribution, the specific ~ NOW let us consider recursive on the average graphs,
form of the latter will affect the long time behavior of Rw I-€-, such that

and to speak of recursive graph; will m.ake no more sense. F={(FiA=1,h=0)s = 1. (12)
The former case has been considered in Ref. [1]; the latter ] )
has been included in Ref. [2]. This class includes all recursive structures as well as

Let us choose the magnetic figkddirection as theith ~ Many transient graphs._ Even in this case it is possible
coordinate axis in the spin space and define Ihl. We to show that (11) implies the absence of spontaneous

then define the magnetization per sit&, which is the magnetization. Here we give the .fundamental points
order parameter of the model, as of the proof. The complete technical aspect will be

1 1 discussed in details in a forthcoming review paper [13].
M(h) = — Z<gln> = — Z’”i’ (7) First, we need a definition and a lemma. We define the
N 5 N 5 measurdG'| of a subgraplG’ of G as the average over
where the average is with respect to the usual Boltzmanaf its characteristic function, i.e|G'| = (x¢s:(i))g, with
weight. xo'(i) =1if i € G' and0 else. Then it is possible to
In Ref. [1] we showed that, even after taking theprove the following lemma: IfG = U;_, G; and the
thermodynamic limitN — o, i.e., on the infinite graph G, have no common sites, theA,)e = > i —, |G:l[{A)G,,
G, lim,—oM(h) = 0 if RW on G are recursive. Here we whereA; is a generic function defined on the sites(af

extend this statement to recursive on the average RW. Now two cases are possible: or for some> 0 there
Consider, as in [1], discrete time RW d defined by  exists a subgraply. with |G| > 0 such that forh — 0
the hopping probabilities fromto j, m; > € for i € GL, or such subgraph does not exist for
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any positivee. In the latter case one can easily showto prove the theorem, since only this definition implies
that the average magnetizatidf(i) goes to0 for h — 0,  the divergence on the average Bf(1,» — 0) on every
since it must be less than any finige In the following  subgraph with nonzero measure. On the other hand, all
we shall prove that the former case is impossible. Let ushe known examples of structures whépg;(A = 1,h —
suppose&;. exists. From (12) it follows that, for eadi’  0))g = « but (12) does not hold, show SSB at finite
such that|G'| > 0, lim,—o(P;;(1; h))g: = . If |GL| =  temperature [13].

1, the averages ofs coincide with the averages of. Thus, although a mathematical proof does not yet exist,
and since{mii’,-,-(l;h))(;é = elGQI(P,-,-(l;h))GQ, (11)isnot we conjecture that continuous symmetry models always
satisfied due to the divergence of its right hand side fohave a broken symmetry phase at finite temperature on

h— 0. - transient on the averaggraphs, i.e., on graphs where (12)
Consider now) < |G.| < 1. DefiningG. = G — G. s not true.
and applying the previous lemma to (11) we get Notice that our definition of SSB is based on the

average magnetizatio. However, on inhomogeneous

P (1 G D1 V= I )2
(i Pii (1 M) |Gl + <m‘P”(1’h)>Gs|Gf|) structures (IS) it is possible to hawé = 0 but all local

(Pii(1; h))G: |1GL + <I3,-,»(1;h)>5/5|5'5| magnetizationm; > 0 (if 0 is the only accumulation
2 point for the m;) [13]. This is another consequence
= Bm, (13)  of the splitting between local and average behavior on

IS. In general, critical phenomena on IS should be

which implies classified according to both local and average behavior,

€X(P;i(1; h))g: |G J? and two different classes of critical exponents should
Br(L)= G| = din — 1) (14)  pe given to describe them completely. Even from an
m experimental point of view, one should consider the

i ) i possibility of having different results studying localized or
Now, since the enumerator diverges for~ 0, to satisfy b1k physical quantities. This is particularly important in
(1_4) at finite temperature even the denominator has tQisordered systems and polymer physics, where IS often
diverge, so we have occur. This phenomenon also explains why the spectral
lim <[:ii(1;h)>(_}; dimensiond defined according to the large time behavior
=0 (P;;(1; h))g; of P;;(r,h = 0) is not a complete generalization dfin

the study of SSB. In fadi is defined by

Now notice that (11) can be easily proven not only Pii(t) ~ /2 (16)
for constanth, but also for an arbitrary distribution of " ’
positive #;, i.e., for a site dependent magnetic field, and it has been shown that such a definition is independent
by the same steps used in [1] to prove (11). So, wef the starting point [5]. However,(P;;(t))¢ can have
can rescaleh on G., introducing a fieldh;(h) in such a different asymptotic behavior, so we have to define also
a way that the limit (15) isl instead ofe« with the anaverage spectral dimensiaf, by
numerator and the denominator still diverging. Since _d,)2
this rescaling requires larger magnetic fields, by GKS (Pii(D)g ~ 1 ‘ (17)
inequalities [14] it follows that all local and average Such a dimension is not greater than the local one and
magnetizations of the modified system cannot be smallegn all the above mentioned counterexamples of transient
than the corresponding quantities in the original onefractals without SSB it is exactly 1 [11]. Moreover, it
But if the limit (15) is 1, (11) impliese = 0 at any can be shown [11] thatl, coincides with the fracton
finite temperature. So the original hypothesis is false andimension defined according to the low frequency density

— o, (15)

consequently lino M (k) = 0. of vibrational modes [4], i.e.,
The same result is easily proven in the same way 71
also for the quantum Heisenberg models considered plw) ~ 0% (18)
in Ref. [1], since even for these models an inequalityfor » — 0.
equivalent to (11) has been obtained [1]. In general many other physical parameters, such as

So the previous generalization of MWT to recursivethe intrinsic fractal dimension, on IS split in a local and
graphs has now been extended to a larger class @ average one, coinciding only in particular cases. A

structures, which can also be transient, provided thefyrther analysis of these phenomena will be presented in
are recursive on the average. Notice that although th@yrthcoming papers.

local recurrence conditions; = 1 and P;;(A = 1,h —

0) =« are equivalent by (10), this is not the case
for the average ones. In fact, even fit =1 implies *Electronic address: cassi@vaxpr.pr.infn.it
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