
VOLUME 76, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 APRIL 1996

Italy
Local vs Average Behavior on Inhomogeneous Structures: Recurrence on the Average
and a Further Extension of Mermin-Wagner Theorem on Graphs
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Spontaneous breaking of a continuous symmetry cannot occur on a recursive structure, where a
random walker returns to its starting point with probabilityF ­ 1. However, some examples showed
that the inverse is not true. We explain this by further extension of the previous theorem. Indeed, even
if F , 1 everywhere, its average over all the points can be 1. We prove that even on theserecursive on
the averagestructures the average spontaneous magnetization ofOsnd and Heisenberg models is always
0. This difference between local and average behavior is fundamental in inhomogeneous structures and
requires a “doubling” of physical parameters such as spectral dimension and critical exponents.

PACS numbers: 64.60.Cn, 47.53.+n, 75.10.–b
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It is well known that large scale geometry deeply a
fects the universal behavior of critical systems. Ren
malization group theory allows us to understand how t
happens for statistical models on regular lattices and
dicts that the Euclidean dimension is the only relev
geometrical parameter in determining universality class

The situation is not so clear when we are dealing w
geometrical structures without translational invarian
such as disordered lattices, fractals, polymers, amorph
materials, or, in general, graphs. In particular we
not know yet which anomalous dimension (if any) is t
equivalent of Euclidean dimension for lattices.

Recently [1,2] it has been shown that the critical beh
ior of continuous symmetry models on graphs is related
the much simpler problem of random walks (RW). Inde
such models cannot have spontaneous symmetry brea
(SSB) at any finite temperature if simple nearest neighb
RW without traps on the same graph are recursive, i.e
the probabilityFi of ever returning to the starting site is
for each pointi. Since on regular lattices RW are recursi
in 1 and 2 dimensions, this result includes the well kno
Mermin-Wagner theorem (MWT) [3], according to whic
no spontaneous breaking of a continuous symmetry is p
sible on 1 and 2 dimensional lattices. Moreover, since
long time behavior of RW probability of returning to th
origin allows us to define an anomalous dimensiond̃ called
spectral dimension, [4,5] equal to the Euclidean oned on
lattices and#2 for recursive graphs, it seemed likely th
d̃ could be the right generalization ofd to graphs. In ad-
dition, it is established that MWT can be inverted, i.e.,
lattices continuous symmetries are always spontaneo
broken ind . 2 [6]. Thus one would expect the sam
should happen for graphs with̃d . 2, i.e., on transient
graphs, whereFi , 1 for eachi.

However, an infinite class of counterexamples has b
found containing transient fractals with arbitrary larged̃
and showing no SSB [2,7–10]. This fact shows that
previous generalization of MWT cannot be inverted a
that d̃ is not a satisfactory generalization ofd.
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In this Letter we prove a further generalization o
MWT, including the previous one, explaining all know
counterexamples and suggesting a different definition
d̃, that can be shown to be equivalent to the fract
dimension, eliminating many troubles arising from th
previous one.

The fundamental concept we introduce here, i.e.,
currence on the average, is only one aspect of a m
more general phenomenon happening on infinite inhom
geneous systems. In fact, on infinite geometrical str
tures where not all sites are equivalent to each other,
average over all sitesi of a local quantityai can show
completely different properties with respect to eachai .
This is the case for the probabilityFi in the above men-
tioned counterexamples. In fact, even ifFi , 1 for each
i, Fi can be arbitrarily close to 1, which is an accumul
tion point for theFi. If it is the only accumulation point,
it follows that the mean valuēF of Fi is exactly 1 [11].
WhenF̄ ­ 1 we shall call RW and the graph where the
are definedrecursive on the average(ROA). Usual re-
cursive structures are also ROA, so that all properties
shall prove for ROA also hold for them.

In the following we shall prove that on ROA structure
Osnd and quantum Heisenberg ferromagnetic mod
cannot show spontaneous average magnetization at
finite temperature. Since we shall use the same nota
and some results of Ref. [1], here we briefly recall t
mathematical setting of the problem already presen
there.

Our discrete structure is described by an infinite gra
G. We need an infinite network in order to allow, i
principle, SSB. This graph is the limit of a sequence
finite subgraphs chosen in such a way that every bond
G does not belong only to a finite number of subgrap
in the sequence. This is the usual and correct way u
in mathematical literature to recover the thermodynam
limit. A particular choice of subgraphs, consisting o
fixing an origin pointO and taking all sphere subgraph
with center O (set of points and bonds at a chemic
© 1996 The American Physical Society 2941



VOLUME 76, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 15 APRIL 1996

re
e

en

the

e
y i

ive

he

ns
tt

an

he

e
.

.

f

t
ce.

ss.
all
,

nce
ses.

0)

hs,

as
ible
ous
nts

e
.
the

or
distance fromO less than a fixed one), gives a mo
familiar picture for physicists, recalling the Van Hov
thermodynamic limit. Notice that it can be easily prov
that the final result is independent ofO as well as of the
site ordering in each sphere subgraph.

Therefore we start with a generic subgraph in
sequence, i.e., a finite connected graphG consisting of
N sites i ­ 1, . . . , N and of bondshi, jj joining them;
we say that two sitesi and j connected by a bond ar
nearest neighbors. The graph topology is described b
adjacency matrixA, whose elements are given by

Aij ­

Ω
1 if i andj are nearest neighbors,
0 if i andj are not nearest neighbors. (1)

We now consider anOsnd model sn $ 2d on G defined
by the Hamiltonian

H ­ 2
X
ij

nX
m­1

s
m
i Jijs

m
j 2

X
i

nX
m­1

hms
m
i (2)

with the spin components satisfying the constraint
nX

m­1

s
m
i s

m
i ­ 1 (3)

and with the ferromagnetic couplings

Jij ­ Jji

Ω
­ 0 if Aij ­ 0 ,
.0 if Aij ­ 1 . (4)

If we introduce the further constraints on the posit
couplings

Jij $ d . 0 , (5)

di ;
X

j

Jij # J , ` (6)

for each bondhi, jj and each sitei of G , all results
will depend only on graph topology and not on t
particular distribution ofhJijj. If we allow 0 or ` to be
accumulation points for thehJijj distribution, the specific
form of the latter will affect the long time behavior of RW
and to speak of recursive graphs will make no more se
The former case has been considered in Ref. [1]; the la
has been included in Ref. [2].

Let us choose the magnetic field$h direction as thenth
coordinate axis in the spin space and defineh ; j $hj. We
then define the magnetization per siteM, which is the
order parameter of the model, as

Mshd ;
1
N

X
i

ksn
i l ;

1
N

X
i

mi , (7)

where the average is with respect to the usual Boltzm
weight.

In Ref. [1] we showed that, even after taking t
thermodynamic limitN ! `, i.e., on the infinite graph
G, limh!0 Mshd ­ 0 if RW on G are recursive. Here w
extend this statement to recursive on the average RW

Consider, as in [1], discrete time RW onG defined by
the hopping probabilities fromi to j,
2942
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Sijshd ;
Jij

h 1 di
, (8)

and a decay or trapping probability ati given by

pishd ­ 1 2
di

di 1 h
. (9)

Call Piist; hd the probability of returning to the starting
site i and Fiist; hd the probability of returning toi for
the first time aftert steps, with hopping probabilities (8)
Introducing the generating functionsf̃sld ;

P`
t­0 ltfstd,

we have [12]

P̃iisl; hd ­
1

1 2 F̃iisl; hd
. (10)

Now Fi ; F̃iisl ­ 1d represents the total probability o
returning to i at any time. If Fi ­ 1 for a site i, then
Fj ­ 1 for every site j. In this case RW are called
recursive.

In Ref. [1] we obtained the inequality

b21sn 2 1d
d
J2

kmiP̃iis1; hdl2
G

kP̃iis1; hdlG

# 1 , (11)

holding for every subgraphG and so also for the infinite
graph G, with k flG ; limN!` N21

PN
i­1 fi . Here and

in the following, limN!` means we are taking the limi
according to the above mentioned Van Hove sequen
In this way we avoid any ambiguity about its uniquene
In general, for simplicity sake, we are assuming that
the limits exist. From a more formal point of view
one should work with “limsup” instead of “lim” in the
enumerator of (11); the final result concerning the abse
of spontaneous average magnetization holds in both ca

When RW without traps are recursive, from (1
P̃iisl ­ 1; h ! 0d ! ` and this fact and (11) allow us
to extend the MWT to recursive graphs [1].

Now let us consider recursive on the average grap
i.e., such that

F ­ kF̃iisl ­ 1, h ­ 0dlG ­ 1 . (12)

This class includes all recursive structures as well
many transient graphs. Even in this case it is poss
to show that (11) implies the absence of spontane
magnetization. Here we give the fundamental poi
of the proof. The complete technical aspect will b
discussed in details in a forthcoming review paper [13]

First, we need a definition and a lemma. We define
measurejG0j of a subgraphG0 of G as the average overG
of its characteristic function, i.e.,jG0j ­ kxG0sidlG , with
xG0sid ­ 1 if i [ G0 and 0 else. Then it is possible to
prove the following lemma: IfG ­

Sn
k­1 Gk and the

Gk have no common sites, thenkAilG ­
Pn

k­1 jGkjkAilGk
,

whereAi is a generic function defined on the sites ofG.
Now two cases are possible: or for somee . 0 there

exists a subgraphG0
e with jG0

ej . 0 such that forh ! 0
mi . e for i [ G0

e , or such subgraph does not exist f
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any positivee. In the latter case one can easily sho
that the average magnetizationMshd goes to0 for h ! 0,
since it must be less than any finitee. In the following
we shall prove that the former case is impossible. Le
supposeG0

e exists. From (12) it follows that, for eachG0

such thatjG0j . 0, limh!0kP̃iis1; hdlG0 ­ `. If jG0
e j ­

1, the averages onG coincide with the averages onG0
e

and sincekmiP̃iis1; hdlG0
e

$ ejG0
e jkP̃iis1; hdlG0

e
, (11) is not

satisfied due to the divergence of its right hand side
h ! 0.

Consider now0 , jG0
ej , 1. DefiningG

0
e ; G 2 G0

e

and applying the previous lemma to (11) we get

ssskmiP̃iis1; hdlG0
e
jG0

e j 1 kmiP̃iis1; hdlG
0

e
jG

0
e jddd2

kP̃iis1; hdlG0
e
jG0

ej 1 kP̃iis1; hdlG
0

e
jG

0
ej

# b
J2

dsn 2 1d
, (13)

which implies

e2kP̃iis1; hdlG0
e
jG0

e j

1 1
kP̃iis1;hdlG

0
e
jG

0

e j

kP̃iis1;hdlG0
e
jG0

e j

# b
J2

dsn 2 1d
. (14)

Now, since the enumerator diverges forh ! 0, to satisfy
(14) at finite temperature even the denominator has
diverge, so we have

lim
h!0

kP̃iis1; hdlḠ0
e

kP̃iis1; hdlG0
e

­ ` . (15)

Now notice that (11) can be easily proven not on
for constanth, but also for an arbitrary distribution o
positive hi, i.e., for a site dependent magnetic fie
by the same steps used in [1] to prove (11). So,
can rescaleh on Ḡ0

e , introducing a fieldh0
ishd in such

a way that the limit (15) is1 instead of ` with the
numerator and the denominator still diverging. Sin
this rescaling requires larger magnetic fields, by G
inequalities [14] it follows that all local and averag
magnetizations of the modified system cannot be sma
than the corresponding quantities in the original o
But if the limit (15) is 1, (11) implies e ­ 0 at any
finite temperature. So the original hypothesis is false
consequently limh!0 Mshd ­ 0.

The same result is easily proven in the same w
also for the quantum Heisenberg models conside
in Ref. [1], since even for these models an inequa
equivalent to (11) has been obtained [1].

So the previous generalization of MWT to recursi
graphs has now been extended to a larger class
structures, which can also be transient, provided t
are recursive on the average. Notice that although
local recurrence conditionsFi ­ 1 and P̃iisl ­ 1, h !

0d ­ ` are equivalent by (10), this is not the ca
for the average ones. In fact, even ifF ­ 1 implies
kP̃iis1, h ! 0dlG ­ `, the inverse is not necessarily tru
Our definition of ROA is given by (12), and it is necessa
s

r
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to prove the theorem, since only this definition impli
the divergence on the average ofP̃iis1, h ! 0d on every
subgraph with nonzero measure. On the other hand
the known examples of structures wherekP̃iisl ­ 1, h !
0dlG ­ ` but (12) does not hold, show SSB at fini
temperature [13].

Thus, although a mathematical proof does not yet ex
we conjecture that continuous symmetry models alwa
have a broken symmetry phase at finite temperature
transient on the averagegraphs, i.e., on graphs where (12
is not true.

Notice that our definition of SSB is based on th
average magnetizationM. However, on inhomogeneou
structures (IS) it is possible to haveM ­ 0 but all local
magnetizationmi . 0 (if 0 is the only accumulation
point for the mi) [13]. This is another consequenc
of the splitting between local and average behavior
IS. In general, critical phenomena on IS should
classified according to both local and average behav
and two different classes of critical exponents shou
be given to describe them completely. Even from
experimental point of view, one should consider t
possibility of having different results studying localized
bulk physical quantities. This is particularly important
disordered systems and polymer physics, where IS o
occur. This phenomenon also explains why the spec
dimensiond̃ defined according to the large time behavi
of Piist, h ­ 0d is not a complete generalization ofd in
the study of SSB. In fact̃d is defined by

Piistd , t2d̃y2 , (16)

and it has been shown that such a definition is independ
of the starting pointi [5]. However,kPiistdlG can have
a different asymptotic behavior, so we have to define a
anaverage spectral dimensioñda by

kPiistdlG , t2d̃ay2 . (17)

Such a dimension is not greater than the local one
on all the above mentioned counterexamples of trans
fractals without SSB it is exactly 1 [11]. Moreover,
can be shown [11] that̃da coincides with the fracton
dimension defined according to the low frequency dens
of vibrational modes [4], i.e.,

rsvd , vd̃a21 (18)

for v ! 0.
In general many other physical parameters, such

the intrinsic fractal dimension, on IS split in a local an
an average one, coinciding only in particular cases.
further analysis of these phenomena will be presented
forthcoming papers.
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