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Random Walks on Bundled Structures
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Bundled structures (BS) are discrete structures obtained joining to each point of a “base” graph a copy
of a “fiber” graph. In condensed matter physics BS are used as realistic models for the geometry and
dynamics of nontranslationally invariant systems (polymers, inhomogeneous systems, etc.). We present
an analytical solution for the random walk problem on these structures, which is possible when we know
the solution for base and fiber separately. We obtain an expression for the spectral dimension of the
BS as a function of the spectral dimensions of its components. Moreover, we discuss some applications
of these results concerning anomalous diffusion laws, proving the existence of nondisordered structures
with logarithmic and sublogarithmic diffusion laws due only to geometric features.

PACS numbers: 61.43.Hv, 05.50.+q, 47.53.+n, 72.70.+m

Anomalous diffusion is one of the most studied andself-similar (e.g., comblattices [4], branched structures
intriguing problems in contemporary statistical physics.[5], etc.). Spectral dimension can be experimentally de-
Its applications concern a wide class of fields rangingermined by measurements involving diffusion processes
from condensed matter to dynamical systems. Randorte.g., time-resolved spectroscopy of nearest-neighbors en-
walks on discrete structures give us a powerful and simplergy transfer) but, in general, is quite difficult to obtain
model to understand the microscopical origin of suchthe theoretical prediction of such measures by analyti-
phenomenon. The deviation from usual diffusion lawscal means. In fact, the only available general technique,
is due in general to the lack of translational invariance.e., the renormalization group approach, gives exact re-
of transition probabilities. In fact, it has been known for sults only for a very small family of deterministic fractals,
many years that on translationally invariant lattices (TIL)called exactly decimable fractals [5]. In particular, such
the mean square displacement of a simple random walker technique does not apply to structures with fractal dy-
(i.e., without bias) goes as namics and without self-similarity: in this case sometimes

) ~ ¢, (1) onecan stil! obtain exact resu]ts, but always applying very
and the probability of returning to the starting site goes agart!cular tricks [4’.6’7]' In this Letter we shall deal with
Zan a wide class of discrete structures (bundled structures),
_PO(t) ~! ) ) ) (2) not necessarily fractals, different from TIL, of great in-
for larget, whered is the Euclidean dimension, regard- terest from an experimental as well as a theoretical point
less of any other geometrical detail. Translational invariof view. Bundled structures (BS) can be obtained join-
ance can be lost in essentially two different ways, i.e., byng to each point of sbasestructure, a copy of diber

introducing a random distribution of transition probabili- strycture. Comb polymers [8] [Fig. 1(a)], brush polymers
ties on a TIL and averaging over that, or by introducing

discrete structures geometrically different from any TIL,
without fluctuating probabilities. The first case has been
studied by many authors and presents a wide collection ¢

anomalous diffusion laws [1], including logarithmic be-
havior [2]. The second one, which we shall deal with, has a)

b)

become of primary importance since 1982, when Alexan-
der and Orbach [3] realized that fractal geometry deeply
affects diffusion phenomena, modifying the time expo- --
nents in (1) and (2). To describe such modifications, they
introduced the spectral dimensidrand wrote (1) and (2)
as
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Po(t) ~ 12, @ o
whered; is the fractal dimension. Later it became clear

that this fractal dynamicsis a much more general be- ;5 1 (a) Comb polymer, (b) brush polymer, (c) kebab

havior, common not only to fractals, but also to otherattice, (d) Sierpinski-gasket kebab, and (e) BS with factal
geometrical structures differing from TIL without being asB and 2-NTD as¥.
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[Fig. 1(b)], and many kinds of branched aggregates are alAlthough the explicit functional form of such a quantity
examples of BS, as well as their theoretical models studdepends in general on the chosen starting site, it has
ied in [4,6,7]. By rigorous combinatorial methods, we re-been shown [6] that its asymptotic behavior and the
late the main random walk quantities for a generic BS tospectral dimension in particular are independent of this
the corresponding ones for its base and its fiber. These rehoice. This is why, for simplicity’s sake, we shall deal
lations allow us to obtain the exact spectral dimension anavith walkers starting from a point belonging to the base.
diffusion exponent for the BS simply knowing the sameMoreover, for the first time we shall restrict ourselves to
parameters for the base and the fiber, without any specificase graphs with constant coordination numggr This
calculation. Moreover, we shall show that (3) and (4) areconstraint will then be easily removed. If a walker returns
not the most general laws one can obtain for BS, but irto 0 in t steps, in generalz among them have been
many cases we have some important logarithmic correcspent on the base ang- = r — rg on the fibers. Let
tions or even logarithmic laws, never obtained up to nowus divide the latter into groups of successive steps on a
without introducing bias or averaging on disorder. fiber, separated by a step on the base. In such a way we
Let us begin with some definitions. Given two graphsobtainsg + 1 groups ofty,...,t,,+1 Steps, respectively,
B and F, not necessarily different, and a sieof F, with#; = 0and}; #; = ty. Each group corresponds to
we call bundled graph withaseB andfiber F the graph a walk on the fiber starting and returning iy with a
(B, F, F), built by joining to each site dB a copy of F in  decay probability infF equal tozg/(z3 + zr), zr being
such a way thdt is the only siteéB andF have incommon the coordination number of on the fiber, due to the
(Fig. 2). Simple examples of bundled graphs are showipossibility of escaping along the base. This allows us to
in Fig. 1. Itis an easy exercise to show that the intrinsiowrite
fractal dimension (or connectivity dimension)@, F, F) Y Y '
is given bydg 5 = dg + df; i.e., it is simply the _ 2B
sum of the lgasfe gnd fiber inj:rinsic fractal dimensions. Po(®) Z Z Z PB(IB)(Z + z )
Moreover, it can be shown that it always exists a natural / /
embedding in an Euclidean space of suitable dimension, X Py(t) Pyt )80+ 1 )
such that these connectivity dimensions coincide with the
corresponding fractal ones. In the following we shallwhere Pz(z) is the probability of returning to the origin
drop the subscriptB, F, F) for quantities referring to the on the base graph amiz(¢) is the probability of returning

t5=0 =0  tz+1=0

whole BS where no confusion is possible. to the starting point on the fiber with the given decay
Now let us introduce discrete time random walks on theprobability inF. 5
bundled graph defining the jumping probabilitipg; = Introducing the generating functionsP(\) =

1/z; if i andj are nearest neighbors apg = 0 otherwise ~ >,_, A'P(r), we obtain

[z; is the coordination number of sitein (B, F, F)]. N

In the following we describe the main steps of the 5 0\ — B\ F < B g )

derivation of our results together with some applications; Po) = Pr(WPg F PF). ©

more details and examples will be given in a forthcoming

paper [9]. We shall first calculate the probabili®s(zr).  Notice that the constant coordination number requirement
was introduced in order to have a probability of escaping
on the fiber independent of the base point. The same
condition can be reached even if the base points have

; ﬁ /" a different coordination numbert;, simply by adding a
W P \ staying probability on the site equal faz — z;)/z3,
Ln' + o [ NWAN i where zg is the largest value of;. Now it can be
| B x,/\_.. shown that on a generic graph the addition of a staying
/ L probability bounded from above does not affect the
F 3 '\,_"IF o asymptotic behavior of Green functions at large times, so
{ | e 1 _ that the following results still hold for general base graphs
Y N A W & %" (the only condition being the boundedness 9f
{ 'hl, '-\I. '|)) ‘o . In order to calculate the spectral dimension of the
= P, V) < f/{,- bundled graphd, notice that (4) implies the following
/f-/ Vol \Lﬁj ) behavior for the singular part @fy(A):

ral ) & N ]
Y & # - _ \d/2-1
dw/(j | D“‘\ - S[Ro] ~ 1 T ford # 2n.
y } 1-2) In(1 — A) otherwise
(7)
FIG. 2. Building of a bundled structure. for A — 17, wheren is any natural number.
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By an asymptotic development of (6) and the introduc-involving logarithmic corrections. In order to deal with
tion of (7) we obtain the following expression far them we now introduce a more general expression for
Py(t) allowing logarithmic corrections to the main power
law as well as a compact notation to deal with them.

dy ifdy =2, Let us define the logarithmic dimensiopsi) by

g=1la—as if dp =2 anddg =4, (g)
- ~  dpds o ~ iy )
dy +dg — 5% ifdy=2anddg =4, Py(t) ~ l_[’ InB(’)(;) (9)
i=0

Where&’f anddsg are the spectral dimensions of the fiber

and of the base, respectively. It is remarkable that théor t+ — o, where ‘Inx = In‘"'Inx, with °Inx = x and

result is independent of the poifit where the fibers are B(0) = —d/2.

joined to the base. According to such notation, by similar techniques and
Notice that in (8) the casegr = 2 anddg = 4 play  standard Tauberian theorems, it is possible to obtain the

a particular role. These are indeed critical dimensionsfollowing complete composition formulas:

-1 ) ) foro0<i<m,
(1 = D) [Brlmg) + 1()] - 1(5) fori =m=my,
B(i) = _ i . . B . (10)
(1 = F)BF(i) + 0 — mg — mp)Bg(i — my)
+8i - mpumal (3) = il (%) otherwise

holding for dg <4, dy <2, where m = min[i = while for dy > 2 the expression ofx?) tends to a
0,18() # —1], m = my + 8z,omp, andI(x) = 1 for  constant independent bfvhich means localization.
integerx and 0 otherwise. Foids > 2, B(i) = Bx(i) Now let us see how the recipes previously obtained
for eachi. For df <2 and dg >4 the expres- work treating in detail a few cases. Let us first consider
sion of Py(r) for the bundled structure can be easilya BS whereB and F are both linear chains; it is easy
obtained from the expression of the correspondento realize that we have built a two-dimensional comb
quantity of the fiber alone by replacing eaghs(i) lattice. To find out that the spectral dimension of the
with  B(i) = —BF(i) — 28;mI(d5/2) for i =my comb isd =3/2 it is sufficient to putdy = dz = 1
while B(i) = B#(i) for 0 < i < m#. Finally the case in (8); then we easily obtain thatx?)(r) ~ r'/2 since
dy <2anddg = 4 is the same as the cagg <2 and y3(0) = 1; following similar steps we can recover, in
dg > 4 if mg < —1 and the same as the cagd¢ <2 a much simpler way, all the results that we found after
anddg < 4 if mg > —1. The casedy = 2 must be direct calculation in a previous work [10]. If we use a
treated as the caséy < 2 if the fiber is a recursive 2D hypercubical lattice for the base and a linear chain for
lattice, and as the cas%gr > 2 when the fiber is transient. the fiber, we obtain a “brush lattice” whe () ~ ¢!
Following similar steps we can obtain the expression ofand{(x2) (r) ~ /2. A curious result is represented by the
the diffusion law on BS of the projectior on the base class of lattices withiz = 4 andd = 2; in this case we
of the position of the random walker at timgx being have BS which result to be transient lattices [iBy(A)
the chemical distance of the projection from the startings finite for A — 1~] while their spectral dimension is
point. Once we know that on the base alone the diffusion/ = 2, a value usually considered typically of recursive

law has the expression lattices [Po(A) infinite in the considered limit].
% To find logarithmic corrections we can, for example,
g (1) ~ [0, (11) build up a BS with a linear chain a8 and a 2D
i=0 TIL as F; in a previous paper [7] we studied in detalil

o~ these structures, we called “kebab lattices,” and found out
we can prove that on BS witldy < 2 we have the thatPo(r) ~ t~'In~1/2(z) and(x2) () ~ In(z). Now these

expression (11) with exponents given by results come straightforward as a result of (12). This
example suggests that we can find, by a suitable choice

d .
y5(0)(1-7) for i ZQ’ of B and F, BS with logarithmic corrections at every
y(i) = 0 2 forO<i<mg,  order. If bothB and F are 2D TIL, we havePy(r) ~
y80)[BF(i) + 1(F)] fori=mg >0, t~In~1(7); these lattices used as fibers for another 2D TIL
y5(0)Bx(i) + yg(i — mg) fori>mg, give Py(t) ~ t~'In"!(¢) and, iterating this procedure
times, we getPy(r) ~ [1'_, /In~!(¢). On these structures

(12)  we have(x?) (r) ~ "In(z).
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Notice that, even if the structures considered in all thetists building up polymers and noncrystalline solids with
previous examples cannot be embedded in 3D space, jiredefined anomalous diffusion and transport properties,
we use the fractal trees called NTD with intege11]  simply by joining more common existing “bricks.”
instead ofd-dimensional TIL, we obtain BS with the
same asymptotic laws, which are not only embeddable,
but even realistic models for a wide class of branched
polymers. So we can predict the existence of real systems

Zho(\j/vmg %utzjlot?arlthnglc d;]f_fus_lonl. N(;]t only poI)f/nJ_ers ((j:an &1] See, for example, S. Havlin and D. Ben-Avraham, Adv.
e described by BS but this is also the case of disordere Phys.36, 695 (1987).

solid materials showing anisotropic transport such as somgz] s, Havlin, A. Bunde, Y. Glaser, and H.E. Stanley, Phys.

cuprates [12]. Using our results we can obtain BS with Rev. A 34, 3492 (1986).

different diffusion laws along the base and fiber directions. [3] S. Alexander and R. Orbach, J. Phys. LetB, L635

This is the case, e.g., of kebab lattices [7] where we  (1982).

have (x2) ~ Int along the axis andx?) ~ ¢ along the [4] G.H. Weiss and S. Havlin, Physica (Amsterdat84A,

orthogonal directions, so that it behaves as an insulating or 474 (1986).

a conducting system depending on the particular direction.[5] K. Hattori, T. Hattori, and H. Watanabe, Prog. Theor.
But maybe the most interesting feature of all these re- _ Phys. Suppl92, 108 (1987).

sults is that, since they relate the properties of a wholel[®] D- Cassi and S. Regina, Phys. Rev. L&l 1647 (1993).

structure to those of its components, we cannot only pre-m D. Cassiand S. Regina, Mod. Phys. Lett9Be01 (1995)

. . L . [8] P.G. de GennesScaling Concepts in Polymer Physics
dict the behavior of existing systems by decomposing them (Cornell University Press, Ithaca and London, 1979).

in simpler parts, but also we can project complex systemsig) p. cassi and S. Regina (to be published).

with required diffusion properties by composing simpler[10] D. Cassiand S. Regina, Mod. Phys. Let6RL397 (1992).
existing structures. This aspect of “diffusion engineering”[11] R. Burioni and D. Cassi, Phys. Rev.49, R1785 (1994).
could be easily exploited by chemists and material scienfl2] M.P. Fontana (private communication).
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