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The infrared singularities of a Gaussian model on a general network are invariant under a local
rescaling of the masses. This exact result leads to some interesting rigorous relations concerning
diffusion and harmonic oscillations on fractals and inhomogeneous structures. We show that a generic
distribution of waiting probabilities does not affect the spectral dimension in diffusive problems, neither
does a change of masses in an oscillating network. In particular, we prove an exact relation between
random walks and vibrational spectrum showing the possibility of noncoincidence of vibrational and
usual diffusive spectral dimensions.

PACS numbers: 63.50.+x, 05.40.+j, 47.53.+n
b
d
ly
t

e
n
t

a
a

o
ic
th

.
o

h
i

e
i

d
o
y
e

o
o
a

s
x

a

a
e
8

n-
d

c-

s

s
s.
an
s.
)

ed
me
n

e

The study of statistical properties in real structures
means of model systems is greatly stimulated and gui
by the idea of universality. According to this idea, on
a few very general features are sufficient to determine
physical behavior in a wide class of phenomena. In su
a way we can group our systems in a limited numb
of universality classes. This is the case for crystalli
solids undergoing magnetic phase transitions, where
lattice dimension and the symmetry of the Hamiltoni
are the only information needed to determine critic
exponents. In the same way many long range or l
frequency properties depend only on the Bravais latt
dimensionality. This phenomenon allows us to study
simplest system in a given universality class to obta
general physical results common to all other members

These universal properties would be even more imp
tant in noncrystalline and disordered structures, as am
phous solids, polymers, glasses, and fractals, for whic
simple geometrical characterization based on dimens
is not evident. In this case the determination of univ
sality classes would suggest the most natural geometr
parameter generalizing the concept of dimension.

In recent years various definitions of generalized
mensions have been proposed, starting from Mandelbr
fractal dimension [1]. The most useful in the study of d
namics and critical phenomena turned out to be the sp
tral dimension [2]. However, some different definitions
this parameter have been given and its universality pr
erties are far from being evident. In this Letter we an
lyze these definitions and rigorously prove their univer
features. The latter allow one in addition to deeply e
plore the relation between the definitions and to point o
a highly nontrivial difference which could be fundament
in the study of inhomogeneous structures.

The idea of an anomalous dynamical dimension w
first proposed by Dhar [3] in 1977, in connection with th
behavior of statistical models on networks. Then in 19
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Alexander and Orbach [2] introduced the spectral dime
sion d̃ to describe low frequency vibrational spectrum an
long time random walks (RW) properties on fractals, a
cording to the asymptotic power laws

rsvd , vd̃21, (1)

wherersvd is the density of harmonic vibrational mode
with frequencyv and

P0std , t2d̃y2, (2)

whereP0std is the probability of returning to the starting
site aftert steps for a random walker. These definition
were considered to be equivalent by physical argument

Then it became clear that the spectral dimension c
be defined not only for fractals, but for generic network
In this framework Hattori, Hattori, and Watanabe (HHW
[4] gave a rigorous mathematical definition ofd̃ for an
infinite discrete structure (graph) based on the infrar
singularities of a Gaussian model defined on the sa
structure. Let us recall in a simplified way the mai
point of this definition. Given a connected graphG, its
adjacency matrixAij has all elements equal to0 except
when the sitesi and j are nearest neighbors (nn), wher
Aij ­ 1. Then we can define a Gaussian model onG by
the Hamiltonian

Hshm2
i jd ­

1
4

X
nn

sfi 2 fjd2 1
X

i

m2
i f2

i

­
1
2

X
ij

fisLij 1 m2
i dijdfj , (3)

where the square massesm2
i are all bounded from above

and from below by positive numbers andLij is the
Laplacian matrix defined byLij ; zidij 2 Aij, with zi ­P

j Aij being the coordination number of sitei. The
correlation functions

kfifjlhm2
i j ­ sL 1 Md21

ij , (4)
© 1996 The American Physical Society 1091
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where Mij ; dijm2
i , can be defined by averaging wit

respect to the Boltzmann weight exps2Hd. In the infrared
limit s ! 01 the leading singular part of the correlatio
function kfifilhsm2

i j behaves as

singkfifilhsm2
i j , ssd̃y2d21slnsdIsd̃y2d, (5)

where Isxd ­ 1 for integer x and 0 otherwise. HHW
showed that this definition has some universal propert
indeed it is independent of sitei and, for a restricted clas
of graphs withd̃ , 2, also of the particular distribution
hm2

i j. In addition, they proved the coincidence of the
d̃ with the parameter defined in (2), in the case
continuous time RW.

Here we prove that the HHW definition is indepe
dent of thehmij distribution for any graph. This result
allows in turn to prove the following fundamental prop
erties: (i) The coincidence of HHW definition with th
corresponding one for discrete time RW; (ii) the indepe
dence of RWd̃ of any waiting probabilities distribution;
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(iii) an explicit relation between vibrational̃d and the av-
erage ofP0std over all sites; and (iv) the independence
vibrationald̃ of any bounded mass distribution.

Let us begin by the generalization of universality wi
respect to mass rescaling. HHW proved that ifm02

i # m2
i

for any i, then kfifilhm2
i j # kfifilhm02

i j. Because of the
divergence ofkfifjlhsm2

i j for vanishings whend̃ , 2 and
to the boundedness conditions on the squared masses
allows us to prove the independence ofd̃ of a specific
mass distribution. Notice that the divergence of t
correlation function is necessary in this proof, in order
get significant inequalities between asymptotic behavio
If these functions do not diverge, in the infrared limit th
singular part containing the information aboutd̃ cannot be
separated by a generic nonsingular finite part. Howeve
is possible to get divergent quantities by taking derivativ
up to a suitable order ofkfifjlhsm2

i j with respect tos. In
this way we obtain a function diverging according to
power law with exponent depending oñd. Then it has
been proven [4] that
µ

2
d
ds

∂N

kfifilshm2
i j ­ N!

X
k1...kn

m2
k1

· · · m2
kN

kfifk1lshm2
i jkfk1fk2lshm2

i j · · · kfkN
fjlshm2

i j . (6)
s

se-
the

the
Now notice that, by straightforward steps, one can a
prove that if m02

i # m2
i for any i, then kfifjlhm2

i j #

kfifjlhm02
i j, for i fi j. Applying the last inequalities to

the correlation functions appearing in (6), and consider
the boundedness by positive numbers of mass distr
tions, it is easy to prove the independence ofd̃ of hm2

i j for
a generic graph.

Now consider discrete time RW on a graph, defined
the hopping probabilities matrix

Pij ­
Aij

zi
. (7)

The probabilityPiistd of returning to a starting sitei after
t steps is given by

Piistd ­ sPtdii . (8)

If we introduce the generating functions̃Piisld ;P
t ltPiistd, it holds

P̃iisld ­ s1 2 lPd21
ii ­ sL 1 Md21

ii
zi

l

­ kfifilhm2
i j

zi

l
, (9)

with m2
i ­ zis1 2 ldyl. Considering that, from Taube

rian and Abelian theorems, the conditionsPiistd , t2d̃y2

for t ! ` and singfP̃iisldg , s1 2 ldsd̃y2d21 for l ! 12

are equivalent [5], it follows also that the Gaussian a
the discrete time RW definitions ofd̃ are equivalent.

Now let us introduce a waiting probability distributio
wi modifying the hopping probabilities matrixP to

P0
ij ­

Aij 1 dijwi

zi 1 wi
. (10)
o

g
u-

y

d

The modified generating functions are given by

P̃0
iisld ­ s1 2 lP0d21

ii ­ sL 1 M 0d21
ii

zi 1 wi

l

­ kfifilhm02
i j

zi 1 wi

l
, (11)

with m02
i ­ szi 1 wid s1 2 ldyl and, from the mass in-

dependence, they have the same singular part asP̃iisld.
This proves that the RW asymptotic behavior and con
quently the RW spectral dimension are independent of
introduction of waiting probabilities.

Now let us consider our graphG as an oscillating
network with point massesMi , bounded by positive
numbers, joined by springs of elastic constantk ­ 1 when
Aij ­ 1.

The normal modes of this system are the solutions of
eigenvalue equationsX

j

Lijxj ­ v2Mixi , (12)

with v being the frequency andxi the displacement from
equilibrium position at sitei. Let us posev2 ­ l and
define the densityrlsld of eigenstates with eigenvaluel,
and rvsvd the density of modes with frequencyv. If
rvsvd , vd̃21 for v ! 0, thenrlsld , ld̃y221 for l !
0. Now notice that, in this case,Z rlsld

l 1 e
dl , esd̃y2d21 (13)

for e ! 0. ButZ rlsld
l 1 e

dl ­ T̄rfsM21L 1 ed21g

­ T̄rfsL 1 Med21Mg , (14)
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with M being the diagonal matrix of oscillating mass
Mi andT̄rfCg ; limN!` N21

PN
i­1 Cii. Now we can ob-

serve that the latter expression, due to the mass boun
ness, has the same singular part as the average ove
sites ofG of kfifilhem2

i j with m2
i ; Mi . Because of the

generalized HHW inequalities we considered at the beg
ning of this Letter, it follows the mass independence of t
asymptotic behavior ofrvsvd and consequently of the vi
brational spectral dimension.

The latter, as one can see from (14), is also related
RW. However, it depends on the average over all sites
the probabilitiesPiistd and not on a specific one. Althoug
all Piistd have always the same asymptotic behavior, it
not possible to conclude that even their average sho
behave in the same way. So, in principle, the vibratio
d̃ is independent and possibly different from all the oth
definition of spectral dimension.

Although it seems rather difficult to give a general ge
metrical condition leading to different asymptotic beha
iors of Piistd and T̄rfPstdg, in some specific structure
where they can be explicitly calculated such a differen
is indeed found. This is the case of the class of gra
known as comb lattices [6]. There, by direct computatio
one can verify that, due to the very particular geomet
T̄rfPstdg coincides with the probability of returning to th
starting point on a linear chain and goes ast21y2 for large
t, while Piistd , t2qy2, with q ­ 2 2 22d11, where the
integer numberd is the Euclidean dimension of the natu
ral embedding space [6].

Notice that the boundedness of oscillating masses
well as the boundedness of the weightswi are sufficient
conditions for universality. It is a hard task to prove
weaker necessary condition, since in absence of boun
ness the asymptotic behavior could in principle depend
the spatial mass (orwi) distribution. However, on a lin-
ear chain one can argue that the boundedness of the m
value of mi and the finiteness of the mean value ofwi

are necessary and sufficient to preserve universality.
validity of this criterion for more complex structures, a
though likely, is still an open problem.

In conclusion, the results obtained clarify the univers
properties of the spectral dimension and show that t
parameter is a good generalization of the usual dimens
in the description of a large class of physical phenome
The coincidence of Gaussian and RW definitions sugge
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that the long range geometry affects in the same way t
classes of problems that are in principle very differe
indeed the Gaussian model is deeply related to statist
models for phase transitions, while discrete time RW a
usually introduced to describe diffusion on real structur
Moreover, the fact that the possibility for a random walk
of staying on each site with different probabilities do
not affect its long time properties clearly shows th
the latter are related only to large scale geometry a
largely independent of any local detail. In a similar wa
the result obtained for the harmonic spectrum, mean
the independence of its low frequencies regime of a
changes in the masses (such as, e.g., the presenc
different isotopes with any distribution), underline th
fundamental role played by the geometrical structu
with respect to other physical ingredients. Finally, th
possibility of difference between the vibrational spectr
dimension and the RW and Gaussian ones, which will
further studied in a forthcoming paper [7], is a sign
the need to distinguish between local and bulk parame
on inhomogeneous structures [8] where, due to the la
of invariance properties, local quantities do not contain
complete information about the whole system.
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