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Universal Properties of Spectral Dimension
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The infrared singularities of a Gaussian model on a general network are invariant under a local
rescaling of the masses. This exact result leads to some interesting rigorous relations concerning
diffusion and harmonic oscillations on fractals and inhomogeneous structures. We show that a generic
distribution of waiting probabilities does not affect the spectral dimension in diffusive problems, neither
does a change of masses in an oscillating network. In particular, we prove an exact relation between
random walks and vibrational spectrum showing the possibility of noncoincidence of vibrational and
usual diffusive spectral dimensions.

PACS numbers: 63.50.+x, 05.40.4j, 47.53.+n

The study of statistical properties in real structures byAlexander and Orbach [2] introduced the spectral dimen-
means of model systems is greatly stimulated and guidesiond to describe low frequency vibrational spectrum and
by the idea of universality. According to this idea, only long time random walks (RW) properties on fractals, ac-
a few very general features are sufficient to determine theording to the asymptotic power laws
physical behavior in a wide class of phenomena. In such -1

X . plw) ~ o, @
a way we can group our systems in a limited number
of universality classes. This is the case for crystallinevherep(w) is the density of harmonic vibrational modes
solids undergoing magnetic phase transitions, where th#ith frequencye and
lattice dimension and the symmetry of the Hamiltonian Po(t) ~ t74/2, )

are the only information needed to determine critical i . i i
exponents. In the same way many long range or lowvherePy(t) is the probability of returning to the starting

frequency properties depend only on the Bravais latticSite afterz steps for a randpm walker. These definitions
dimensionality. This phenomenon allows us to study theVere considered to be equivalent by physical arguments.
simplest system in a given universality class to obtain Then it became clear that the spectral dimension can
general physical results common to all other members. P€ d_eflned not only for fractals, _but for generic networks.
These universal properties would be even more imporln this framework Hattori, Hattori, and Watanabe (HHW)
tant in noncrystalline and disordered structures, as amof#] 9ave a rigorous mathematical definition @ffor an
phous solids, polymers, glasses, and fractals, for which infinite discrete structure (graph) based on the infrared

simple geometrical characterization based on dimensiopingularities of a Gaussian model defined on the same

is not evident. In this case the determination of univer-Stucture. Let us recall in a simplified way the main
pint of this definition. Given a connected graph its

sality classes would suggest the most natural geometric&C! )
parameter generalizing the concept of dimension. adjacency matrixi;; has all elements equal ® except

In recent years various definitions of generalized di-When the sites and; are nearest neighbors (nn), where

mensions have been proposed, starting from Mandelbrotdi; = 1. Then we can define a Gaussian model®iy
fractal dimension [1]. The most useful in the study of dy-the Hamiltonian

namics and critical phenomena turned out to be the spec- 5 1 5 -
tral dimension [2]. However, some different definitions of H({m;}) = 4 Z(¢i — ¢ + Zmi é;
this parameter have been given and its universality prop- o '
erties are far from being evident. In this Letter we ana- 1 2
) S = — (Li; + m:8;))d;, 3
lyze these definitions and rigorously prove their universal 2 % $illij + mi3i)¢; 3)

features. The latter allow one in addition to deeply ex- here th sed Il bounded b
plore the relation between the definitions and to point outVNere the square mas are afl bounded Irom above

a highly nontrivial difference which could be fundamentaland frpm belqw by positive_numbers ani:i,-j_ Is the

in the study of inhomogeneous structures. Laplacian matrix defined by;; = z;0;; — Aj;, with z; =
The idea of an anomalous dynamical dimension wa;fA"{ tt_)elnfg tht? coordination number of site The

first proposed by Dhar [3] in 1977, in connection with the COretation functions

behavior of statistical models on networks. Then in 1982 (Did )y = (L + M) ()]

ij >
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where M;; = éijm?, can be defined by averaging with (iii) an explicit relation between vibrational and the av-
respect to the Boltzmann weight éxpH). In the infrared  erage ofPy(¢) over all sites; and (iv) the independence of
limit s — 0% the leading singular part of the correlation vibrationald of any bounded mass distribution.

function(¢; ¢;)(,»2y behaves as Let us begin by the generalization of unive’lr%sality 2vvith
. 50y 5 respect to mass rescaling. HHW proved thatif < m;
d/2)—1 1(d/2
SINK P bidism?y ~ s (Ins)! 2, ®)  for any i, then{e; ¢,z = (bidi),n. Because of the

where I(x) = 1 for integerx and 0 otherwise. HHw divergence of¢; ;) for vanishings whend <2and
showed that this definition has some universal propertied® the boundedness conditions on the squared masses, this
indeed it is independent of siteand, for a restricted class @/lows us to prove the independence afof a specific
of graphs withd < 2, also of the particular distribution Mass distribution.  Notice that the divergence of the
{m?}. In addition, they proved the coincidence of theircorre_latl_o.n funptlon is necessary in this proof., in orde_r to
d with the parameter defined in (2), in the case ofdet significant inequalities between asymptotic behaviors.
continuous time RW. If these functions do not diverge, in the infrared limit the
Here we prove that the HHW definition is indepen- singular part containir_1g the informatipn abaUtannot be .
dent of the{m;} distribution forany graph. This result Separated by a generic nonsingular finite part. However, it
allows in turn to prove the following fundamental prop- IS possmlg to get divergent quantities by taking derivatives
erties: (i) The coincidence of HHW definition with the UP t0 @ suitable order dib; ¢ ), with respect tos. In
corresponding one for discrete time RW; (ii) the indepeniiS way we obtain a function diverging according to a

dence of RWd of any waiting probabilities distribution;| Eg\évr?rp:?\,/ve\r,\w[t;] teg(zftonent depending h Then it has

d N
<_ %) <¢t¢t>v{m,2} = N! Z mlzl T m]%N<¢i¢k1>x{m,2}<¢k1 ¢k2>x{m,2} T <¢kN ¢j>v{m,2} . (6)
ks

Now notice that, by straightforward steps, one can a‘sd’ he modified generating functions are given by

rove that if m> = m? for any i, then (¢;¢; = N 4w,
P m; m; Yy 1 <¢z¢j>{mi2} Pl/,()l) _ (1 o /\Pl)l_ll _ (L + M/)i;l Zi Wi

(bidbj)mpy, Tor i # j. Applying the last inequalities to A

the correlation functions appearing in (6), and considering

the boundedness by positive numbers of mass distribu- = (b1 bidmm 4+ wi i (11)

tions, it is easy to prove the independencel aff {m?} for ‘ A

a generic graph. with m,’~2 = (z; + w;) (1 — A)/A and, from the mass in-
Now consider discrete time RW on a graph, defined bydependence, they have the same singular paR;ds).

the hopping probabilities matrix This proves that the RW asymptotic behavior and conse-

A;; quently the RW spectral dimension are independent of the
P = Z—j : (7)  introduction of waiting probabilities.

Now let us consider our grapl¥ as an oscillating
network with point massesM;, bounded by positive
numbers, joined by springs of elastic constart 1 when

The probabilityP;;(¢) of returning to a starting siteafter
t steps is given by

Pii(t) = (P @® A1 . .
The normal modes of this system are the solutions of the
If we introduce the generating function®;(A) =  eigenvalue equations

Zt )ltPil‘(t), it holds 2

ZLinj = w Mix,- s (12)
PN =00—-AP) =@+ M 1E . . j .
W= Ji ( Ji A with @ being the frequency and the displacement from

_ equilibrium position at site. Let us posew? = [ and
= {Didi)my Z—)i (9) define the density,(/) of eigenstates with eigenvalue

_ 5 o and p,(w) the density of modes with frequeney. If
with m; = z;(1 — A)/A. Considering that, from Taube- , (») ~ 7! for @ — 0, thenp,(l) ~ 19/~ for | —
rian and Abelian theorems, the conditioRs() ~ +~%> (. Now notice that, in this case,
for + — o and sinP;;(A)] ~ (1 — V)@~ for A — 1~
are equivalent [5], it follows also that the Gaussian and f
the discrete time RW definitions af are equivalent.

Now let us introduce a waiting probability distribution
w; modifying the hopping probabilities matrik to ] pi(1) dl = T{M 'L + ]

, A + Sijw,- | + €
: zi tow; =Ti(L + Me)"'M], (14)

[ -~
Fanes ’+( )6 dl ~ P! (13)

for e — 0. But
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with M being the diagonal matrix of oscillating massesthat the long range geometry affects in the same way two
M; andTr[C] = limy_. N! Zﬁil C;;. Now we canob- classes of problems that are in principle very different:
serve that the latter expression, due to the mass boundeittdeed the Gaussian model is deeply related to statistical
ness, has the same singular part as the average over aibdels for phase transitions, while discrete time RW are
sites ofG of (¢; P ;)em?y With m? = M;. Because of the usually introduced to describe diffusion on real structures.
generalized HHW inequalities we considered at the beginMoreover, the fact that the possibility for a random walker
ning of this Letter, it follows the mass independence of theof staying on each site with different probabilities does
asymptotic behavior ob,, (w) and consequently of the vi- not affect its long time properties clearly shows that
brational spectral dimension. the latter are related only to large scale geometry and

The latter, as one can see from (14), is also related ttargely independent of any local detail. In a similar way,
RW. However, it depends on the average over all sites afhe result obtained for the harmonic spectrum, meaning
the probabilitiesP;; () and not on a specific one. Although the independence of its low frequencies regime of any
all P;;(¢+) have always the same asymptotic behavior, it ichanges in the masses (such as, e.g., the presence of
not possible to conclude that even their average shouldifferent isotopes with any distribution), underline the
behave in the same way. So, in principle, the vibrationafundamental role played by the geometrical structures
d is independent and possibly different from all the otherwith respect to other physical ingredients. Finally, the
definition of spectral dimension. possibility of difference between the vibrational spectral

Although it seems rather difficult to give a general geo-dimension and the RW and Gaussian ones, which will be
metrical condition leading to different asymptotic behav-further studied in a forthcoming paper [7], is a sign of
iors of P;;(t) and Tr{P(1)], in some specific structures the need to distinguish between local and bulk parameters
where they can be explicitly calculated such a differenceon inhomogeneous structures [8] where, due to the lack
is indeed found. This is the case of the class of graphsf invariance properties, local quantities do not contain a
known as comb lattices [6]. There, by direct computationcomplete information about the whole system.
one can verify that, due to the very particular geometry, Laboratoire de Physique Théorique de I'Ecole Normale
Tr[P(¢)] coincides with the probability of returning to the Supérieure is a unité propre du CNRS, associée a I'Ecole
starting point on a linear chain and goesa¥? for large  Normale Supérieure et & I'Université de Paris Sud.

t, while P;;(r) ~ t74/2, with ¢ = 2 — 274*!, where the
integer numbet! is the Euclidean dimension of the natu-
ral embedding space [6].
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