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Abstract. Statistical models on infinite graphs may exhibit inhomogeneous thermodynamic
behaviour at macroscopic scales. This phenomenon is of a geometrical origin and may be properly
described in terms of spectral partitions into subgraphs with well defined spectral dimensions
and spectral weights. These subgraphs are shown to be thermodynamically homogeneous and
effectively decoupled.

1. Introduction

The study of model systems without translation invariance is an interesting and complex
subject of modern statistical mechanics. A very general description of this situation is in terms
of statistical models on graphs, that is on generic networks formed by sites, where dynamical
variables reside, and links connecting pairwise sites whose variables are coupled. This is the
direct extension of the typical set-up valid for crystalline lattices, which are indeed very special,
homogeneous graphs.

On the other hand, graphs are not in general homogeneous and the main question is how
these inhomogeneities affect physical properties and give rise to relevant changes with respect
to lattices. While small-scale inhomogeneities will affect local properties, one expects that
only large-scale inhomogeneities are relevant for bulk thermodynamic properties. Most likely,
the latter properties are those that show universal features which depend only on a few global
parameters, just as in the case of lattices. The study of such universality requires consideration
of infinite graphs (with certain natural restrictions given below), where the thermodynamic
limit is taken.

The main relevant geometrical parameter affecting universal properties is the spectral
dimension d̄ of an infinite graph G [1–3]. It generalizes the Euclidean dimension of lattices to
arbitrary real values and is naturally defined from the infrared behaviour of the spectral density
of the Laplacian operator on G [3]. An equivalent definition, which is adopted in this work,
is in terms of average properties of random walks on G at large times, that is to say of the
singularities of the Gaussian model on the same graph [2, 3].

On the other hand, the spectral dimension of the whole graph G, by itself turns out
not to be sensitive to macroscopic inhomogeneities strong enough to give rise to true
thermodynamic inhomogeneities. Indeed, it may happen that distinct macroscopic parts
of an infinite graph exhibit distinct thermodynamic behaviour. We shall show below that
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such parts can be characterized in terms of their own spectral dimension, possibly plus
a spectral weight, resulting in an effective spectral partition of G. The crucial point is
that these parts form subgraphs which are thermodynamically independent, that is to say
completely uncoupled as far as thermodynamic properties are concerned. In other words,
inhomogeneous thermodynamic behaviour on the same infinite graph necessarily implies
effective decoupling.

2. Infinite graphs: basic definitions, measure and averages

A (unoriented) graph G (see, for instance, the classic book [4]) is the ordered couple (G,GL)

formed by a countable set G of vertices (or sites, or nodes), that we shall generically indicate
with lowercase Latin letters, i, j , k, . . . , and a set GL of unoriented links (or bonds) which
connect pairwise the sites and are therefore naturally denoted by pairs (i, j) = (j, i). When
the set G is finite, G is a finite graph and we shall denote by N the number of vertices of G.
A subgraph G ′ of G is a graph such that G′ ⊆ G and G′L ⊆ GL. A subgraph is said to be
complete if it has all the available links, that is if, given the subset of nodes G′, the subset of
links G′L is the largest possible one.

A path in G is a sequence of consecutive links {(i, k)(k, h) . . . (n,m)(m, j)}. A graph is
said to be connected, if for any two points i, j ∈ G there is always a path joining them. In the
following we will consider only connected graphs.

The graph topology can be described algebraically by its adjacency matrix A with elements

Aij =
{

1 if (i, j) ∈ GL

0 if (i, j) �∈ GL.
(2.1)

The Laplacian matrix L on the graph G has elements

Lij = ziδij − Aij (2.2)

where zi =
∑

j Aij , the number of nearest neighbours of i, is called the coordination number
(or degree) of site i. Here we will consider graphs with zmax = supi zi <∞.

One can also consider a generalization of the adjacency matrix, which corresponds to
the ferromagnetic and uniformly bounded coupling Jij , with Jij �= 0⇐⇒ Aij = 1 and
sup Jij <∞, inf Jij > 0. The elements of the generalized Laplacian matrix then read

Lij = Jiδij − Jij (2.3)

where Ji =
∑

j Jij .
Every connected graph G is endowed with an intrinsic metric generated by the chemical

distance ri,j which is defined as the number of links in the shortest path(s) connecting vertices
i and j .

Let us now consider thermodynamic averages on infinite graphs (for an up to date
mathematical overview on infinite graphs, see [5]). The Van Hove sphere So,r ⊂ G of centre
o ∈ G and radius r is the complete subgraph of G containing all i ∈ G whose distance from o

is � r and all the links of G joining them. We will call No,r the number of vertices contained
in So,r .

In the thermodynamic limit the average [f ]G of a real-valued function f on G is

[f ]G ≡ lim
r→∞

1

No,r

∑
i∈So,r

fi . (2.4)
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This average does not depend on the choice of the origin o ∈ G provided f is bounded from
below and

lim
r→∞
|∂So,r |
No,r

= 0 (2.5)

where |∂So,r | is the number of vertices of the sphere So,r connected with the rest of the graph
[6]. Here we shall restrict our attention to graphs with this property.

The measure |A| of a subset A ⊂ G is the average value [χ(A)]G of its characteristic
function χi(A) defined by χi(A) = 1 if i ∈ A and χi(A) = 0 if i �∈ A. The measure of a
subset of links G′L ⊆ GL is similarly given by

|G′L| ≡ lim
r→∞

N ′L,r
No,r

(2.6)

where N ′L,r is the number of links of G′L contained in the sphere So,r . Any two non-zero-
measure subsets A and B of G are said to be equivalent if their symmetric difference has zero
measure, that is |A| = |B| = |A ∩ B|. For any given non-zero-measure subsets A ⊂ G we
shall denote its equivalence class by {A}. ThenA is said to be a representative of {A}. With the
subgraph G ′ defined by the ordered double (G′,G′L), we identify the measure of the subgraph
as the measure |G′| of its points.

Given a (non-zero-measure) subsetA ⊂ G, we define the average onA of any real-valued
function f on G as

[f ]A = [χ(A) f ]G. (2.7)

By definition [f ]A is a function only of the equivalence classes, that is [f ]A = [f ]{A}.
Moreover, quite evidently [f ]C = [f ]A + [f ]B whenever C = A ∪ B and |A ∩ B| = 0.

Given a complete subgraph M = (M,ML), we denote by M̄ its complement in G. This
is formed by all points that do not belong to M and by all links of GL which connect them.
M̄ is therefore a complete subgraph. We call the pair (M,M̄) a partition of order two of G
whenever both M and its complement M̄ are non-zero-measure subsets of G.

We now introduce the important concept of the minimal distance D(A,B) between any
pair A,B of non-zero-measure subgraphs of G such that |A ∩ B| = 0. It is defined as

D(A,B) = min(n : |A∩nB| > 0) (2.8)

where

A∩nB = {i ∈ A : dist(i, B) = n} dist(i, B) = min
j∈B

ri,j . (2.9)

For n = 0,∩n reduces to the usual intersection operator. Note that, while in general the relation
A∩nB is not symmetric in A,B, the minimal distance is symmetric: D(A,B) = D(B,A).
In fact, from the boundedness of zi , it can be shown by induction on n that

|B ∩n A| � (zmax)
−n |A ∩n B| (2.10)

so that

|A ∩n B| > 0 �⇒ |B ∩n A| > 0 (2.11)

implying our assertion.
Consider now the minimal distance between the two members of a partition of order

two. Suppose D(M,M̄) = n > 1; then |M ∩n M̄| > 0 ⇒ |M ∩n−1 M̄| > 0 from
the boundedness of zi . This implies that if D(M,M̄) is finite, then D(M,M̄) = 1. In
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this case we may say that M and M̄ are densely interlaced, while in the opposite case that
they are infinitely separated. From the definition of minimal distance, it follows that if two
subgraphs A and B of G are infinitely separated, their common boundary ∂(A,B) (i.e. the
links (i, j) ∈ GL with i ∈ A and j ∈ B) is a zero-measure set. Then the two subgraphs
can be disconnected by cutting such a zero-measure set of links. This relates the property
of infinite separability to the simple separability property defined in [6]. Indeed, the two
definitions coincide. We shall term a separable partition a partition (M,M̄) where M and
M̄ are infinitely separated.

3. The Gaussian model: infrared behaviour and the spectral dimension

The Gaussian model on G is defined [2] by assigning a real-valued random variable φi to each
node i ∈ G and then prescribing the following probability measure:

dµr [φ] = 1

Zr
exp

[
−

∑
i,j∈So,r

φi(L +m2 η)ijφj

] ∏
i∈So,r

dφi (3.1)

for the collection φ = {φi; i ∈ So,r}. Here Zr is the proper normalization factor, m > 0 is a
free parameter and η is the diagonal matrix with elements ηij = ηiδij with the real numbers
ηi positive definite and uniformly bounded throughout G (that is, 0 < ηmin � ηi � ηmax,
∀i ∈ G).

The thermodynamic limit is achieved by letting r →∞ and defines a Gaussian measure
over the entire φ = {φi; i ∈ G} which does not depend on the centre of the Van Hove sphere
o [6]. The covariance of this Gaussian process reads

〈φiφj 〉 ≡ Cij (m2) = (L +m2η)−1
ij (3.2)

and hence it satisfies by definition the Schwinger–Dyson (SD) equation

(Ji +m2ηi)Cij (m
2)−

∑
k∈G

JikCkj (m
2) = δij . (3.3)

Setting

Cij =
(1−W)−1

ij

Ji +m2ηi
Wij = Jij

Jj +m2ηj
(3.4)

one obtains the standard connection with the random walk (RW) over G [2]:

(1−W)−1
ij =

∞∑
t=0

(W t)ij =
∑
γ : i←j

W [γ ] (3.5)

where the last sum runs over all paths from j to i, each weighted by the product along the path
of the one-step probabilities in W :

γ = (i, kt−1, . . . , k2, k1, j) �⇒ W [γ ] = Wikt−1Wkt−1kt−2 , . . . ,Wk2k1Wk1j . (3.6)

Note that, as long as m > 0, we have
∑

i (W
t)ij < 1 for any t , namely the walker has a

non-zero death probability. This implies thatCij is a smooth function ofm2 form � ε > 0. In
the limitm→ 0 the walker never dies and the sum over paths in equation (3.5) is dominated by
the infinitely long paths which sample the large-scale structure of the entire graph (here ‘large
scale’ refers to the metric induced by the chemical distance alone). This typically reflects itself
into a singularity of Cij at m = 0 whose nature does not depend on the detailed form of Jij or
ηi , as long these stay uniformly positive and bounded.
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Of particular importance is the leading singular infrared behaviour, as m2 → 0, of the
average [C(m2)]G of Cii(m2), which is a positive-definite quantity, over all points i of the
graph G, which we may write in general as

Sing[C(m2)]G ∼ c(m2)d̄/2−1. (3.7)

The parameter d̄ is called the spectral dimension of the graph G and on regular lattices it
coincides with the usual Euclidean dimension. Henceforth we shall call the coefficient c in
equation (3.7) the spectral weight. The name spectral dimension is related to the behaviour of
the spectral density ρ(l) of low-lying eigenvalues of the Laplacian L; indeed, it can be shown
[3] that ρ(l) scales as a power of l for l→ 0, that is ρ(l) ∼ ld̄/2−1.

4. Large-scale inhomogeneity: homogeneity classes and spectral classes

In the study of statistical models one often has to deal with the average [C(m2)]A ofCii(m2)over
a generic positive measure subset A ⊂ G and, in particular, one has to consider the leading
singular behaviour of [C(m2)]A as m2 → 0. On regular lattices this singular behaviour is
independent of A and it actually coincides with that obtained averaging over all points of G:

Sing[C(m2)]A = Sing[C(m2)]G ∀ A ⊂ G |A| > 0. (4.1)

This property arises from the large-scale homogeneity of regular lattices due to translation
invariance. On graphs, where translation invariance is lost, this property can still hold if the
inhomogeneity is limited to finite scales. More generally, it may happen that inhomogeneity
extends to large scales and the singular parts of equation (4.1) are different on different subsets.
However, we will prove that such subsets must satisfy very strong topological constraints: a
large-scale inhomogeneous graph always consists of homogeneous parts joined together by a
zero-measure set of links. Therefore, the splitting of infrared behaviour always corresponds
to a macroscopically evident inhomogeneity of the graph.

In this section we will give a rigorous formulation of these statements through the following
steps.

• Let us suppose that the graph G has indeed a large-scale inhomogeneity that manifests
itself through the existence of at least one non-zero-measure subset A ⊂ G such that, as
m2 → 0,

Sing[C(m2)]A ∼ cA(m2)d̄A/2−1 (4.2)

with d̄A �= d̄ .
• We then defineM ⊂ G to be a maximally homogeneous (or more briefly maximal) subset

with respect to d̄A whenever:

(a) |M ∩ A| > 0;
(b) Sing[C(m2)]M ∼ cM(m2)d̄M/2−1, with d̄M = d̄A;
(c) for any non-zero-measure subset B ⊂ M we have d̄B = d̄M ;
(d) there exists no B ⊃ M such that d̄B = d̄M and |B| > |M|.
By this definition it follows that the set of all maximal subsets with respect to d̄M coincides
with the equivalence class {M} and we will call it the homogeneity class of d̄M .
• Next we prove

Theorem 1. The subgraphs M and its complement M̄ are infinitely separated, i.e. their
minimal distance D(M,M̄) is infinite and they define a separable partition of G. Since
this separability is induced by the spectral properties embodied by the spectral dimension,
we call this a spectral partition (of order two) of G.
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• Finally, we consider a Gaussian model on the graph M showing that, from the infinite
separability of M and M̄ the spectral dimension of M is d̄M . Therefore, d̄M is a property
of the graph M and defines a spectral class. This chain of arguments may now be applied
to M̄, splitting off a new spectral class if M̄ has a large-scale inhomogeneity of the type
given above. The process can be repeated until necessary, yielding a complete spectral
partition of the original graph G into spectral classes.

Proof of theorem 1. Let us suppose ad absurdum thatD(M,M̄) = 1 and therefore that there
exists a non-zero-measure subset M̄ ′ ⊂ M̄ such thatD(M,M̄′) = 1. From the maximality of
M it follows that d̄M �= d̄M̄ ′ . Let us consider the random-walk representation (3.5) of Cii(m2)

with i ∈ M̄ ′:

Cii(m
2) = 1

Ji +m2ηi

∑
γ : i←i

W [γ ]. (4.3)

Next consider a site k ∈ M whose distance from i is 1. This site exists from the hypothesis
D(M,M̄′) = 1. Then, from the sum over paths in the left-hand side of (4.3) let us retain only
the paths containing k. Then, from the boundedness and positivity of Jij and ηi one obtains

Cii(m
2) � Ckk(m

2)

Jmax +m2ηmax
. (4.4)

Averaging over M and then over M̄ ′ we obtain

[C(m2)]M̄ ′ � K [C(m2)]M (4.5)

where K is a positive constant. Now, taking m2 → 0 and using the asymptotic expression for
[C(m2)] given in (3.7) we obtain

(m2)d̄M̄′ /2−1 � K ′ (m2)d̄M/2−1. (4.6)

Since this argument applies equally well with M and M̄ interchanged, one obtains

(m2)d̄M/2−1 � K ′′ (m2)d̄M̄′ /2−1 (4.7)

which gives d̄M = d̄M̄ ′ , contradicting the hypothesis. Therefore,D(M,M̄) = ∞ and M and
M̄ must be infinitely separated. �

The infinite separability of M and M̄ implies that the two subgraphs can be disconnected
by cutting a zero-measure set of links. This very peculiar property implies thermodynamic
independence, that is the decoupling, in the thermodynamic limit, of a model defined on the
whole graph G into two models defined independently on M and M̄ [6].

This applies in particular to the Gaussian model, so that the two averages of Cii(m2) on
M and M̄ are independent quantities, each satisfying a relation like equation (3.7) with two
distinct spectral dimensions. Most importantly, to any non-zero-measure subset of M there
corresponds by construction the same spectral dimension d̄ of M. We can say then that d̄ is a
universal property of M.
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5. Spectral weights and subclasses of spectral classes

In the singular behaviour of [C(m2)], inhomogeneities at large scales can also appear in the
coefficient of the leading infrared part (3.7). However, following the same steps as the previous
section, we will show that once again a splitting of the value of the coefficient corresponds
to a macroscopic inhomogeneity of the graph and that a macroscopically homogeneous graph
is indeed characterized by universal d̄ and c. Actually, in this case, the proof is subtler and
requires some further mathematical steps.

We first define the spectral subclasses of a given spectral class by looking at the spectral
weight cA, proceeding along steps similar to those followed above.

• Let us suppose that, for a given graph G belonging to the spectral class characterized by
d̄, there exists at least one non-zero-measure subset A ⊂ G such that, as m2 → 0,

Sing[C(m2)]A ∼ cA(m2)d̄/2−1 (5.1)

with cA �= c, with c given as in equation (3.7).
• Then we say that a non-zero-measure subset M ⊂ G, which certainly is maximal with

respect to d̄ , due to its universality, is also maximal with respect to cA whenever:

(a) |M ∩ A| > 0;
(b) Sing[C(m2)]M ∼ cM(m2)d̄/2−1, with cM = cA;
(c) for any non-zero-measure subset B ⊂ M we have cB = cM ;
(d) there exists no B ⊃ M such that cB = cM and |B| > |M|.
By this definition it follows that the set of all maximal subsets with respect to cM coincides
with the equivalence class {M} and we will call it the homogeneity subclass of spectral
weight cM .
• We then prove

Theorem 2. The subgraphs M and its complement M̄ are infinitely separated and define
a spectral partition of G.

• Following the same steps as in the previous section, we then consider a Gaussian model
on the graph M showing that, from the infinite separability of M and M̄, the coefficient
of Sing[C(m2)]M is cM . Therefore, we can say that cM is a universal property of the graph
M and defines a spectral subclass separated from the rest.

Proof of theorem 2. To prove this theorem we first need the following lemma.

Lemma. Within a given spectral subclass, for any subset A of the subclass, the asymptotic
form of [C(m2)]A is invariant under pre-averaging over any normalized point distribution with
non-zero-measure support. In other words, if we define

[C(m2)]A,α = [α C(m2)]A
[α]A

(5.2)

where αi > 0 on a subset of A with non-zero measure, then again

Sing[C(m2)]A,α ∼ cA(m2)d̄/2−1 (5.3)
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with no dependence at all for cA and d̄ on the distribution α = {αi; i ∈ A}. The proof of this
statement is elementary: we define the quantities

fi = (m2)−d̄/2+1Cii(m
2)− cA. (5.4)

Then, by construction, for any ε > 0 there exist a δ > 0 such that we have |[f ]A| < ε as soon
as m2 < δ. Hence we also have∣∣[αf ]A

∣∣ < (
sup
i∈A

αi

)∣∣[f ]A
∣∣ < (

sup
i∈A

αi

)
ε (5.5)

which immediately implies our assertion.

Now we can prove theorem 2.
Let us suppose ad absurdum that D(M,M̄) = 1 and therefore that there exists a non-

zero-measure subset M̄ ′ ⊂ M̄ such thatD(M,M̄′) = 1. From the maximality ofM it follows
that cM �= cM̄ ′ .

The following proof is given only for d̄ < 4, owing to brevity and physical requirements.
Indeed, a real structure has necessarily a dimension d̄ � 3; moreover, from a purely theoretical
point of view, the class of models we have in mind, with site variables and link interactions,
typically have four as an upper critical dimension for the scaling behaviour.

Let us consider first the case of a spectral class where [C(m2)]G diverges when m2 → 0,
that is such that d̄ < 2. The Schwinger–Dyson equation for Cii[m2] reads

(Ji +m2ηi)Cii(m
2)−

∑
k∈G

JikCki(m
2) = 1. (5.6)

Averaging equation (5.6) over M , we obtain the relation

[J C]M +m2 [η C]M − [J · C]M = |M| (5.7)

where (J C)i ≡ JiCii , (η C)i ≡ ηiCii and (J · C)i =
∑

k JikCki . We then divide by [J C]M
and let m2 → 0. Due to the divergence of [J C]M we have that, for any ε > 0 there exists a
δ > 0 such that, as soon as m < δ,

1− ε � [J · C]M
[J C]M

. (5.8)

Next we set

JM̄ ′,i =
∑
k∈M̄ ′

Jik (J · C)M̄ ′,i =
∑
k∈M̄ ′

JikCki (5.9)

and use the positivity of Cii − Cik [2] to push the above inequality to

1− ε � 1− [JM̄ ′ C]M
[J C]M

+
[(J · C)M̄ ′ ]M

[J C]M
(5.10)

which yields

lim
m2→0

[(J · C)M̄ ′ ]M
[JM̄ ′ C]M

= 1. (5.11)

Owing to the symmetry of D(M,M̄′), we may repeat the above steps with M and M̄ ′

interchanged. Since the symmetry of Jij and Cij implies [(J · C)M̄ ′ ]M = [(J · C)M ]M̄ ′ ,
we finally obtain

lim
m2→0

[JM̄ ′ C]M
[JM C]M̄ ′

= 1. (5.12)
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At this stage we apply the lemma given above with α identified with JM̄ ′ or JM , namely

[JM̄ ′ C]M ∼ cM [JM̄ ′ ]M (m
2)d̄/2−1 [JM C]M̄ ′ ∼ cM̄ ′ [JM ]M̄ ′ (m

2)d̄/2−1. (5.13)

However, [JM̄ ′ ]M = [JM ]M̄ ′ so that equation (5.12) implies cM = cM̄ ′ , contradicting our
initial hypothesis that D(M,M̄) = 1 with M maximal. Hence necessarily D(M,M̄) = ∞,
proving our assertion. �

Let us now consider a spectral class where C(m2)G does not diverge in the limitm2 → 0,
while its first derivative with respect to m2, C ′(m2)G, diverges in the same limit. This is the
case of a spectral class characterized by a spectral dimension 2 < d̄ < 4, where

[C ′(m2)]M,α = [α C ′(m2)]M
[α]M

∼ −(d̄/2− 1) cM (m
2)d̄/2−2 m2 → 0. (5.14)

Taking the first derivative with respect tom2 in the Schwinger–Dyson equation (5.6), we obtain

ηiCii(m
2) +m2ηiC

′
ii (m

2) =
∑
k∈G

Jik[C
′
ki(m

2)− C ′ii (m2)] (5.15)

which can be averaged over M giving

[η C]M +m2[η C ′]M = [J · C ′]M − [J C ′]M. (5.16)

Together with equation (5.14), this implies

lim
m2→0

(m2)2−d̄/2([J · C ′]M − [J C ′]M) = 0+ (5.17)

that is, for any ε > 0 there exists a δ > 0 such that, as soon as m2 < δ

0 < ξ([J · C ′]M − [J C ′]M) < ε (5.18)

with ξ = (m2)2−d̄/2. This can be rewritten as

0 < [(J · C ′)M ]M − [JM C
′]M + [(J · C ′)M̄ ]M − [JM̄ C

′]M < ξ−1 ε. (5.19)

Now, since C ′ij ≡ −
∑

k ηkCikCkj are the elements of a negative semi-definite matrix, one has
that [(J · C ′)M ]M − [JM C ′]M > 0. Therefore,

0 � [(J · C ′)M̄ ]M − [JM̄ ′ C
′]M < ξ−1 ε. (5.20)

Again owing to the symmetry of D(M,M̄′), the previous steps can be repeated with M and
M̄ interchanged, leading to

0 � [(J · C ′)M ]M̄ − [JM C
′]M̄ ′ < ξ−1 ε. (5.21)

Since [(J · C ′)M̄ ]M = [(J · C ′)M ]M̄ , these two relations imply

0 � |[JM̄ ′ C ′]M − [JM C
′]M̄ ′ | < ξ−1 ε. (5.22)

Equation (5.14) entails in the limit m2 → 0:

[JM̄ ′ C
′]M ∼ −(d̄/2− 1) cM [JM̄ ′ ]M ξ

−1 [JM C
′]M̄ ′ ∼ −(d̄/2− 1) cM̄ ′ [JM ]M̄ ′ ξ

−1

(5.23)

so that, since [JM̄ ′ ]M = [JM ]M̄ ′ from (5.22) one obtains cM = cM̄ ′ , which contradicts our
hypothesis D(M,M̄′) = 1 and therefore proves our assertion D(M,M̄) = ∞. �
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