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Bose-Einstein condensation in inhomogeneous
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Abstract. – We show that spatial Bose-Einstein condensation of non-interacting bosons occurs
in dimension d < 2 over discrete structures with inhomogeneous topology and with no need of
external confining potentials. Josephson junction arrays provide a physical realization of this
mechanism. The topological origin of the phenomenon may open the way to the engineering
of quantum devices based on Bose-Einstein condensation. The comb array, which embodies all
the relevant features of this effect, is studied in detail.

The recent impressive experimental demonstration of Bose-Einstein Condensation (BEC)
[1] has stimulated a new wealth of theoretical work aimed to better understand its basic
mechanisms [2] and, possibly, to exploit its consequences for the engineering of quantum
devices.

It is well known [3] that for an ideal gas of Bose particles BEC does not occur in dimension
d ≤ 2, and an ad hoc external confining potential is needed to reach the required density of
states. The same is true for free bosons living on regular periodic lattices, while the result
cannot be extended to more general discrete structures lacking translational invariance.

In the following we shall prove that even for d < 2 [4] non-interacting bosons may lead
to Bose-Einstein condensation into a single non-degenerate state, provided one resorts to
a suitable discrete non-homogeneous support structure: indeed, when the bosonic kinetic
degrees of freedom do not depend on metric features only, the particles may feel a sort of
effective interaction due to topology. The proposed mechanism for BEC in lower-dimensional
systems is then a pure effect of the structure of the ambient space and avoids as well the need
of resorting to external random potentials as the ones investigated by Huang in [2]; this is a
very desirable feature in view of engineering real quantum devices.

In practice, the behavior of free bosons over generic discrete structures is made experimen-
tally accessible through the realization of suitable arrays of Josephson junctions. The latter
are devices that can be engineered in such a way as to realize a variety of non-homogeneous
patterns. We shall show indeed that classical Josephson junction arrays arranged in a non-
homogeneous geometry —not even necessarily planar— provide an example of the proposed
mechanism for BEC, leading to a single-state spatial condensation.
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Theoretical studies of Josephson junction arrays are based on the short-range Bose-Hubbard
model, since the phase diagram of Josephson junction arrays may be derived [5] from an
Hamiltonian describing bosons with repulsive interactions over a lattice. In d = 1 the phase
diagram has been studied by analytical [6] and quantum Monte Carlo methods [7]; experi-
mentally, Josephson junction arrays are used to study interacting bosons in one dimension.
For a generic array the corresponding Hamiltonian is given by

HBH = U
∑

i

n2
i +

∑
ij

Aij

(
V ninj − J(a†iaj + a†jai)

)
,

where Aij is the adjacency matrix: Aij = 1 if the sites i and j are nearest neighbors and
Aij = 0 otherwise; a†i creates a boson at site i and ni ≡ a†iai. The phase diagram structure
reflects the competition between the boson kinetic energy (hopping, favouring boson mobility)
and repulsive interaction (Coulomb, working so as to suppress dynamics). In a realistic
experimental setup [8], the parameters U and V depend on the ratio between the intergrain
capacitance C and the gate capacitance C0, while the parameter J describes Cooper pair
hopping. Josephson junction arrays allow for a good experimental control of C/C0 and J ,
which can also be varied over a wide range. For U � J, V , and for bipartite arrays, the
Hamiltonian HBH maps onto the quantum spin-1

2XXZ model [9]. On the other hand, in the
weak-coupling limit (“classical” Josephson junctions) U, V � J , realizable when C/C0 → 0,
the hopping term dominates the physical behaviour of the system, which is then described by
the tight-binding Hamiltonian

H = −t
∑
ij

Aija
†
iaj , (1)

where t is an effective hopping parameter which accounts for the renormalization of the Joseph-
son coupling J ensuing the representation of the junctions phase degrees of freedom in terms of
bosonic creation and annihilation operators. For a non–translation-invariant geometry of the
array the tight-binding model, which describes “free” bosons over a regular lattice, cannot any
longer be interpreted as representing non-interacting particles, just due to the ambient graph
topology. We shall show the dramatic effect of topology already on the simple graph referred to
as square comb [10,11]. This provides an explicit and remarkable example of topology-induced
mechanism leading to a spatial Bose-Einstein condensation in low dimension.

The “square comb” is the graph made of N “fingers” of N sites represented in fig. 1,
whose total number of sites is N2. In the following the generic vertex i is labelled with the
“coordinate” indices (xi, yi) i ∈ ZN (where the latter requirement is imposed to guarantee
periodic boundary conditions).

The tight-binding model on the comb graph is given by the Hamiltonian (1) with the ad-
jacency matrix Aij = (δxi,xi+1 + δxi,xi−1) δyi,0δyj ,0 + (δyi,yi+1 + δyi,yi−1) δxi,xj

. By exploiting
the comb translation invariance in the direction of the backbone, one can perform a Fourier
Transform along the x-direction obtaining a new Hamiltonian in the variables kx:

H = −t
∑
y,y′

∑
kx

(δy,0δy,y′ cos kx + Āyy′)a†kx,yakx,y′ , (2)

where kx = 2πn/N and n = 0, 1, . . . , N − 1 and Āyy′ in the adjacency matrix for a linear
chain (i.e. for each comb finger). The operator akx,y is given by akx,y ≡ ∑N

x=1 e
ikxxa(x,y).

Notice that (2) is the sum of N commuting Hamiltonians representing an one-dimensional
tight-binding model with a local potential at site 0 of value: −t cos kx.
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Fig. 1 – The comb graph: the dots represent Josephson junctions and the links describe the topology
of the array connections, with no reference to their embedding in real Euclidean space.

Fig. 2 – The density of states of the Hamiltonian (1). The solid line indicates the continuous part of
the spectrum ρ0, which is normalized to N(N − 1). The dotted lines denote the sets of zero measure,
the densities ρ+ and ρ− are normalized to N . The x-axis scale is in units of t.

Each of the one-dimensional Hamiltonians appearing in eq. (2) can be diagonalized, in
the thermodynamic limit. To do this, one uses the property that for y ≥ 2 and y ≤ −2
the eigenvectors of −(δy,0δy,y′ cos kx + Āyy′) are those of the Hamiltonian describing a free
particle on the linear chain. Such eigenvectors are: e±ikyy with eigenvalue −2 cos ky, e±kyy

with eigenvalue −2 cosh ky and (−1)ye±kyy with eigenvalue 2 cosh ky. If one requires that the
eigenvalue equations hold also at sites −1, 0, 1 and that the eigenvectors are normalizable,
one finds that the spectrum of the one-dimensional problem is given by the isolated point
E = −2t sgn(cos kx)

√
1 + cos2 kx and by a continuous part R0 = {E | |E| < 2t} with a density

of states given by ρ0(E) = (1/π)(N−1)(4t2−E2)−1/2. From the spectra of the one-dimensional
problems corresponding to different values of kx one obtains in the thermodynamic limit the
density of states for the tight-binding Hamiltonian on the comb-graph (fig. 2).

The spectrum is made of three parts Rα , α = 0,± : for E ∈ R0 the density of states is
given by

ρ0(E) =
1
π
N(N − 1)(4t2 − E2)−1/2 .

Since
∫

R0
ρ0(E)dE = N(N −1), in the thermodynamic limit, almost all the states, i.e. all the

states apart from a set of measure zero, belong to this region and limN→∞(
∫

R0
ρ0(E)dE)/N2 =

1. In the other two regions, R− = {E| − √
8t ≤ E < −2t} and R+ = {E|2t < E ≤ √

8t}, the
density of states is given by

ρ−(E) = ρ+(E) ≡ ρ±(E) = hN
|E|√

8t2 −E2
√
E2 − 4t2

,

where h must be chosen so that
∫

R−∪R+
ρ±(E)dE = N . There follows that in the thermody-

namic limit only a subset of states of measure zero belongs to these regions of the spectrum,
in that one has limN→∞ N−2

∫
R±

ρ±(E)dE = 0. The states with E ∈ R− play a fundamental
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Fig. 3 – The eigenvector corresponding to the lowest energy state. It is constant along the backbone
direction and it decreases exponentially as exp[−arcsh(2) · |x|] along the fingers.

role in the study of bosonic particles on comb structures. The lowest-energy eigenstate of (1)
(corresponding to E0 = −√

8t) is represented in fig. 3. It is constant along the x-direction for
any fixed y, while along y it decreases exponentially with the distance from the backbone.

If one introduces a finite bosonic filling f , i.e. if one fills the comb with fN2 non-interacting
bosons, fixing the number of particles in the grand canonical partition function amounts to
choosing the fugacity z(N,β, f) as

f = N−2
∑

α=−,0,+

∫
Rα

1
z−1eβE − 1

ρα(E)dE , (3)

with 0 < z ≤ e−βt
√

8. Since
∫

R+
(z−1eβE − 1)−1ρ+(E)dE < cN (c is a number independent

of N and z), the third term of (3) vanishes in the thermodynamic limit. On the other hand,
the first term can be positive and finite in the thermodynamic limit if z(N,β, f) → e−βt

√
8

when N → ∞. Denoting by n0 the fraction of particles with energy smaller than −2t,
n0 = limN→∞ f−1N−2

∫
R−(z−1(N)eβE − 1)−1ρ−(E)dE, one has that n0 is a finite fraction

of particle condensed in a subset of states of measure zero. In the thermodynamic limit, if βc

is the inverse temperature for which

1 =
1
πf

∫
R0

dE
(eβc(E+t

√
8) − 1)

√
4t2 − E2

,

one has that if β ≤ βc there always exixts a real and positive z solution of the equation

f =
1
π

∫
R0

dE
(z−1eβE − 1)

√
4t2 − E2

,

and n0 = 0: there is no condensation. For β > βc one has z = e−βt
√

8 and n0 is given by

n0 = 1 − 1
fπ

∫
R0

dE
(eβ(E+t

√
8) − 1)

√
4t2 − E2

.

For T < Tc ≡ (βc)−1 there is Bose-Einstein condensation and in fig. 4 we plot the fraction n0

of particles in the condensate as a function of T for several values of the filling (f = 0.5, 1, 2).
The points where the curves intersect the T -axis are the critical temperatures for the different
fillings.

For T → Tc− the order parameter depends linearly on T since n0 ∝ (T − Tc), and it is
analytic in T for T close to Tc. The behaviour for T → 0 is given by n0 ∝ √

T exp[−(2
√

2 −
2)t/KT ]. This is different from the customary Bose-Einstein condensation in a 3-d box,
where n0 = 1− (T/Tc)3/2. The critical temperature Tc exhibits the dependence on the filling



R. Burioni et al.: Bose-Einstein condensation etc. 255

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

n
f=2

f=1

f=0.5

0

Fig. 4 – The fraction n0 of condensed particles as a function of the temperature T for different fillings
f = 0.5, 1, 2.

f shown in fig. 5, asymptotically (f > 1) linear and of the form Tc ∝ −(
ln f

)−1 for f � 1.
Both behaviours characterize a gapped system. The gap (2

√
2 − 2)t measures the difference

between the ground-state energy and the bottom of the spectral region R0.
The average energy per particle

〈E〉 = −
√

8tn0 +
1
fπ

∫
R0

EdE
(z−1eβE − 1)

√
4t2 − E2

,

shows that all the particles in the condensate have energy −t
√

8, namely they are all in the
ground state. Summarizing, in the thermodynamic limit and for T > Tc almost all particles
have energies between −2t and 2t with the distribution (z−1eβE−1)−1ρ0(E), while for T < Tc

a finite fraction n0 of particles is condensed in the state of lowest energy E0 = −√
8t. These

particles occupy the inhomogeneous state described in fig. 3, in which the sites closer to the
backbone have larger filling than the farther ones.

In conclusion, we exhibited an explicit example (comb array) of Bose-Einstein condensation
into a single state for non-interacting bosons, induced in dimension d < 2 by inhomogeneities
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Fig. 5 – The critical temperature Tc as a function of the filling f .
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without disorder and with no confining external potential in the discrete geometrical structure.
The ensuing condensate shows deconfinement in one direction, i.e. along the comb backbone,
and localization along the orthogonal direction; this is expected to lead to detectable singu-
larities in the response functions.

The model Hamiltonian used is physically implementable by classical Josephson junction
arrays, which it is possible to engineer in any desired geometric setting. Thus Bose-Einstein
condensates arise as an intrinsic device feature, without need of fine-tuning any external
control parameter.

Furthermore, it has been evidenced that the comb fingers may emerge as a relevant geo-
metrical structure to describe quantum degrees of freedom (e.g. a chain of classical Josephson
junctions) aligned along the backbone direction interacting dissipatively with a suitable ex-
ternal environment [12].

Finally, the same devices, as recently proposed [13], might lend themselves to be used
for the realization of BEC-based encoding and manipulation of quantum information [14].
The idea here is that because of the spontaneous symmetry breaking that characterizes it,
a Bose-Einstein condensate should be quite naturally described by a non-linear quantum
mechanics. Such non-linearity can be thought of as due just to the effective interaction of the
bosons composing the condensate. In such a case the scenario recently described by Abrams
and Lloyd [15] whereby non-linear quantum mechanics in the sense of Weinberg [16] implies
polynomial time efficiency in dealing with NP-complete and &P complex computations would
hold. It is intriguing that for the system presented here the relevant non-linearity, indeed
present, is due to geometry and topology rather than to physical interactions.
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