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Abstract. We give a rigorous proof of the existence of spontaneous magnetization at finite
temperature for classical spin models on transient on the average (TOA) graphs, i.e. graphs where
a random walker returns to its starting point with an average probability F̄ < 1. The proof holds
for models with O(n) symmetry with n � 1, therefore including the Ising model as a particular
case. This result, together with the generalized Mermin–Wagner theorem, completes the picture of
phase transitions for continuous symmetry models on graphs and leads to a natural classification
of general networks in terms of the two geometrical superuniversality classes of recursive on the
average and transient on the average.

1. Introduction

The relation between spatial geometry and physical behaviour is a fundamental problem of
modern theoretical physics. The influence of geometry is particularly relevant in statistical
mechanics, where universality in phase transitions and critical phenomena on lattices depends
strongly on large-scale topology. The most general and rigorous results concern the existence
itself of spontaneous symmetry breaking. As for a discrete symmetry model, spontaneous
magnetization occurs if and only if the Euclidean dimension d is >1, while for continuous
symmetries the corresponding condition is d > 2. In the latter case, the necessary condition
is proven by the Mermin–Wagner theorem [1, 2], while the sufficient condition is contained in
the Frölich–Simon–Spencer result about the infrared bound [3, 4].

On a lattice this simple and exhaustive picture allows us to classify statistical models in
geometrical superuniversality classes determined by the Euclidean dimension.

Euclidean lattices are good models for crystals and for more abstract geometrical objects,
such as discretized flat spacetime. However, most real systems, such as glasses, polymers,
biological systems, fractals, have irregular geometry and cannot be described by lattices. In the
same way, the presence of gravitation leads to curved spacetime, which cannot be represented
by lattices. To describe these more general systems, we have to switch to more general
geometrical structures, namely graphs, which are networks made of points and links.

From this perspective, lattices are a class of graphs characterized by a very peculiar
property: translation invariance. This implies the existence of a reciprocal lattice and of the
Euclidean dimension, the latter being the number of independent generators of the translation
group. The proofs of theorems [1–4] depend strongly on translation invariance and an extension
to generic graphs must involve more general techniques. Recently, progress in the study of
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statistical models on infinite graphs has been achieved exploiting the algebraic approach to
graph topology [5, 6].

The generalization to graphs of the Mermin–Wagner theorem [7, 8] has been a first step to
understand the behaviour of spin models on inhomogeneous structures. There, the necessary
condition for the existence of spontaneousmagnetization for continuous symmetry spinmodels
is given in terms of asymptotic randomwalks behaviour. In particular, it is proven that if F̄ , the
average probability of ever returning to the starting point for a walker on the graph, is one, i.e.
the graph is recurrent on the average (ROA), then no spontaneous magnetization occurs. This
result naturally includes the lattice theorem, since Euclidean lattices in one and two dimensions
turn out to be ROA.

In this work we study the case F̄ < 1, i.e. transient on the average (TOA) graphs and
we give a proof of the existence of spontaneous magnetization at non-zero temperature for
classical spin models. The result is the inversion of [7] and an extension of [3, 4], since lattices
with d > 2 are TOA graphs. As in the lattice case, the theorem also holds for the Ising model,
providing a first general result for discrete symmetry on graphs.

Since any graph can be classified either as ROA or TOA, this proof, together with theorem
[7], completes the picture for the case of spontaneous breaking of continuous symmetrymodels
on graphs. In this way we can extend to graphs the concept of geometrical superuniversality
classes. The average recurrence property of random walks provides the link between the
physical behaviour of the O(n) model and the large-scale topology of the discrete space.

In the following section, we introduce the basic graph-theoretical techniques: the algebraic
approach to graph topology, the definition of the thermodynamic limit on infinite graphs, the
random walk problem. Then, in section 2 we define O(n) models and their thermodynamics
on infinite graphs. In section 4 we prove the existence of spontaneous magnetization forO(n)

models defined on a fundamental class of graphs, called pure TOA. Finally, in section 5 we
extend the proof to all TOA graphs. The mathematical details of the proof will be given in the
appendix.

2. Some mathematical properties of graphs

A graph G is a countable set V of vertices (i) connected pairwise by a setE of unoriented links
(i, j) = (j, i). In physical models vertices usually represent sites, where spins or fields are
defined while links represent the interactions between them. If the set V is finite, G is called
a finite graph and we will denote by N the number of vertices of G. A subgraph S of G is a
graph whose set of vertices S ⊆ V and whose set of links E′ ⊆ E.

A path in G is a sequence of consecutive links {(i, k)(k, h) . . . (n,m)(m, j)} and a graph
is said to be connected, if for any two points i, j ∈ V there is always a path joining them. In
the following we will consider only connected graphs. Every connected graph G is endowed
with an intrinsic metric generated by the chemical distance ri,j which is defined as the number
of links in the shortest path connecting vertices i and j .

The graph topology can be described algebraically by its adjacency matrix Aij given by

Aij =
{
1 if (i, j) ∈ E

0 if (i, j) �∈ E.
(1)

The Laplacian matrix �ij is defined by

�ij = zi δij − Aij (2)

where zi = ∑
j Aij , the number of nearest neighbours of i, is called the coordination number

of i. Here we will consider graphs with bounded connectivity, i.e. with maxi zi < ∞.
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�ij is the generalization to graphs of the usual Laplacian on a lattice where zi = z ∀i.
If G is a finite graph the matrix �ij can be consider as a symmetric operator � on a finite
N -dimensional vector space. � is diagonalizable and its spectrum is real, non-negative and
bounded. In particular, 0 is a simple eigenvalue of �ij and it corresponds to the constant
eigenvector. Notice that, while on a regular lattice� is diagonalized by the Fourier transform,
this is not the case for a generic graph.

A generalization of the adjacency matrix Aij is useful in the study of disordered
ferromagnetic models and it is given by the coupling matrix Jij :

Jij = Jji =
{
Jij if Aij = 1

0 if Aij = 0.
(3)

If sup(i,j) Jij < ∞ and inf (i,j) Jij > 0, Jij can be regarded as bounded ferromagnetic
interactions between the nearest-neighbour vertices of the graphs. One can then define the
generalized Laplacian

Lij = Ji δij − Jij (4)

where Ji = ∑
j Jij . On a finite graph, if we consider Lij as a symmetric operator L on N -

dimensional vector space, we have thatL has the same properties of� (2): it is diagonalizable,
its spectrum is real, positive and bounded.

Phase transitions, corresponding to singularities in the free energy of a statistical model,
only occurs in the thermodynamic limit, i.e. on infinite graphs. To define a model on an infinite
graph, G we consider the models defined on a sequence of concentric spheres in the intrinsic
metric, generalizing the usual Van Hove spheres. A generalized Van Hove sphere So,r ⊂ G of
centre o and radius r is the subgraph of G containing all i ∈ G whose distance from o is � r

and all the links of G joining them. We will call No,r the number of vertices contained in So,r .
We define the value of any physical quantity on the infinite graph G as the limit for r → ∞ of
the corresponding quantity calculated for a model on So,r . Given a function φi of the vertices
of G, we define its average value φ of φi as

φ ≡ lim
r→∞

∑
i∈So,r

φi

No,r

. (5)

The measure |S| of a subset S of V is the average value χ(S) of its characteristic function
χi(S) defined by χi(S) = 1 if i ∈ S and χi(S) = 0 if i �∈ S. In an analogous way, we define
the normalized trace TrB of a matrix Bij :

TrB ≡ b (6)

where bi ≡ Bii . It can be shown that if G satisfies all the conditions listed above, all the average
values are independent of the centre of the spheres sequence o [11]. The necessary condition
for the thermodynamic limit to be independent of boundary conditions can be expressed as a
geometrical constraint on the large-scale structure of G. Namely, one must require that

lim
r→∞

|∂So,r |
|So,r | = 0 (7)

where ∂So,r is the boundary of the sphere S.
Occurrence of phase transitions depends on large-scale topology. On a lattice, all the

relevant information about it is encoded in the space dimensionality d. On a graph, where
a direct definition of dimension is lacking, a fundamental tool to characterize large-scale
topology is the long-time asymptotics of random walks.
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Simple discrete time random walks are defined on a graph G by the jumping probabilities
pij between nearest-neighbour sites i and j , which are expressed in terms of the adjacency
matrix:

pij = Aij

zi
= (Z−1A)ij (8)

where Zij = zi δij . From (8) the probability of reaching in t steps site j starting from i is
given by

Pij (t) = (pt )ij . (9)

Graph topology deeply affects a conditional probability related toPij , i.e. the probabilityFii(t)

of returning to the starting point i for the first time after t steps. The relation between the two
probabilities can be expressed simply in terms of their generating functions P̃i(λ) and F̃i(λ)

defined by

P̃i(λ) =
∞∑
t=0

λtPii(t) F̃i(λ) =
∞∑
t=0

λtFii(t). (10)

By standard Markov chains properties one obtains

F̃i(λ) = P̃i(λ) − 1

P̃i(λ)
. (11)

In particular, F̃i(1) is the probability of ever returning to the starting point i and it only depends

on graph topology. Its average value over all starting sites F̄ ≡ limλ→1− F̃ (λ) classifies all
graphs in two families, which we will call recurrent on the average and transient on the
average. A graph is said to be ROA if F̄ = 1 and TOA in the opposite case, i.e. if F̄ < 1.

When dealing with thermodynamic properties one is forced to consider only the average
value of Fi over all starting points of the graphs. Indeed, the standard mathematical
classification of infinite graphs into (locally) transient and recursive, based on the condition
Fi = 1 (for at least one i and therefore for all i) does not coincide with that based on average
values: locally transient graphs can be recurrent on the average [7, 9, 10].

The TOA family must be further divided into two subfamilies: pure TOA andmixed TOA.
A TOA graph is pure if the average value of F̃i(1) is < 1 on every positive measure subset
S ⊂ V :

lim
λ→1−

χ(S)F̃ (λ)

|S| < 1 ∀S ⊂ V |S| > 0. (12)

When condition (12) is not satisfied, i.e. there exists a subset R of V where the average
value of F̃ii is 1, the graph is said to be a mixed TOA. In this case G can be decomposed
into a pure TOA subgraph S and a ROA subgraph S̄ by cutting a zero measure set of links
∂(S, S̄) ≡ {(i, j) ∈ E |i ∈ S ∧ j ∈ S̄} [11].

This classification has a deep geometrical origin and it is left invariant by a redefinition
of jumping probabilities in terms of the bounded interaction matrix Jij [9], i.e. by considering
a rescaled set of pij obtained by replacing Aij with Jij in (8):

pij = Jij

Ji

. (13)

On a pure TOA graph, the following fundamental properties holds, which we will call
infrared boundedness [11]:

lim
µ→0

Tr(L + µ)−1 = v < ∞ (14)
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where µ > 0, while on ROA and mixed TOA one has

lim
µ→0

Tr(L + µ)−1 = ∞. (15)

Our result on the magnetization bound is based on the infrared boundedness property (14).

3. Classical spin models on graphs

Classical spin models are classified according to the symmetry of the Hamiltonian. The typical
symmetry can be described by the O(n) group, for integer n � 1. The simplest Hamiltonian
satisfying this symmetry can be written as

H = − 1
2

∑
ij

Jij �σi · �σj − �h
∑
i

�σi (16)

where Jij is a bounded ferromagnetic interaction matrix on the graph G and �σi ≡ (σ 1
i , . . . , σ

n
i )

are n-dimensional real vectors defined on every vertex with the constraint

�σ 2
i = 1 ∀i. (17)

When n = 1, H describes an Ising model, with a discrete Z2 symmetry, while for n � 2 H
represents a model with continuous symmetry. The external magnetic field �h is chosen to be
along the 1 direction: �h = (h, 0, . . . , 0); h � 0.

By (17) H can be rewritten in the following form which differs from (16) only by an
additive constant:

H = 1
4

∑
ij

Jij (�σi − �σj )
2 − �h

∑
i

�σi = 1
2

∑
ij

Lij �σi �σj − �h
∑
i

�σi (18)

where L is the Laplacian operator (4).
In the canonical Boltzmann ensemble, each configuration {�σi} has the statistical weight

exp[−βH(�σi, �h)] where β = 1/kT . The free energy f of the model in the thermodynamic
limit is defined by

f ≡ − lim
r→∞

1

βNo,r

ln
∫ ∏

i∈So,r

d�σi δ(�σ 2
i − 1) e−βHr ({�σi },h) (19)

where Hr is the restriction of the Hamiltonian (18) to the subgraph So,r .
The order parameter is the average magnetization along the �h direction:

M(β, h) ≡ lim
r→∞

1

No,r

∑
i∈So,r

〈σ 1
i 〉 ≡ 〈σ 1〉 (20)

where the brackets denote the thermal average. One then obtains

M(β, h) = lim
r→∞

1

No,r

∫ ∏
i∈So,r

d�σi δ(�σ 2
i − 1)

( ∑
i∈So,r

σ 1
i

)
e−βHr∫ ∏

i∈So,r
d�σi δ(�σ 2

i − 1) e−βHr

. (21)

On graphs the order parameter must be an average quantity. Local definitions as 〈σi〉 or
limri,j→∞〈σi · σj 〉, which on lattices are equivalent to (20), on inhomogeneous structures can
give ambiguous results in different sites and in general they are not equivalent to (20), which
is the only definition that describes the global behaviour of the model.

In the next sections, we will show that on TOA graphs for small enough temperature we
have

lim
h→0

M(β, h) � c(β) > 0. (22)

The bound onM(h, β) (equation (22)), proves the existence of spontaneous symmetry breaking
in O(n) models.
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4. The pure case

Let us consider first a model defined on a pure TOA graph. The bound on the magnetization
(22) is obtained according to the following steps:

(a) we introduce for the constraint (17) an integral representation using new variables, the
Lagrange multipliers αi . Substituting the integral representation in the expressions of the
magnetization (21) and in the identity

1 = 1

No,r

∫ ∏
i∈Sor

d�σi

∑
j∈Sor

�σ 2
j e

−βHr
∏

k∈Sor
δ(�σ 2

k − 1)∫ ∏
i∈Sor

d�σi e−βHr

∏
k∈Sor

δ(�σ 2
k − 1)

(23)

we can perform the Gaussian integral with respect to the spin variables �σi ;
(b) we determine the asymptotic behaviour of the integrals over αi for β → ∞ by a saddle-

point technique.
(c) we prove two basic inequalities for the inverse of the Laplacian matrix, which will be used

to compare the value of the magnetization with the expression given by (23).

Let us start with point (a) of our proof, writing the spherical constraint with the complex
integral representation of the delta function:

δ(�σ 2
i − 1) = eε/2

2π

∫
dαi exp(−iαi(�σ 2

i − 1)/2 − ε �σ 2
i /2) (24)

where ε is a real arbitrary constant. We will chose ε = hβ. Substituting expression (24) for
δ(�σ 2

i − 1) in (21) and in (23) evaluated on the finite subgraph So,r , we obtain

Mr(h) = 1

No,r

∫ ∏
k∈So,r

d�σk

∫ +∞
−∞

∏
j∈So,r

dαj gβ,h(σ, α)
( ∑

i∈So,r
σ 1
i

)
∫ ∏

k∈So,r
d�σk

∫ +∞
−∞

∏
j∈So,r

dαj gβ,h(σ, α)

1 = 1

No,r

∫ ∏
k∈So,r

d�σk

∫ +∞
−∞

∏
j∈So,r

dαj gβ,h(σ, α)
( ∑

i∈So,r
�σ 2
i

)
∫ ∏

k∈So,r
d�σk

∫ +∞
−∞

∏
j∈So,r

dαj gβ,h(σ, α)

where

gβ,h(σ, α) = exp

(
−β

(
1
2

∑
ij

Lij �σi �σj − h
∑
i

σ 1
i

)
− 1

2

∑
i

(iαi(�σ 2
i − 1) − hβ �σ 2

i )

)
.

Rescaling in both integral αi by βαi and �σi by �σi/
√
β, we can perform the Gaussian integration

on the variables �σi obtaining

Mr(h) = 1

Z

∫
dµβ,h(α)

h

No,r

∑
kj

(L +H + iα)−1
kj (25)

1 = 1

Z

∫
dµβ,h(α)

n

βNo,r

Tr(L +H + iα)−1 +
h2

No,r

∑
ij

(L +H + iα)−2
ij (26)

where dµβ,h(α) is a measure on the space of the Lagrange multipliers αi given by:

dµβ,h(α) =
∏
i∈So,r

dαi exp

(
− 1

2nTr(ln(L +H + iα))

+1
2β

(
i
∑
i

αi + h2
∑
ij

(L +H + iα)−1
ij

))
(27)
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and

Z =
∫

dµβ,h(αi) (28)

with Hij = hδij and αij = αiδij . Expressions (25) and (26) are the statistical averages of the
quantities h

∑
kj (L +H + iα)−1

kj and n/β Tr(L+H +iα)−1 +h2 ∑
ij (L+H +iα)−2

ij with respect
to the measure (27). Notice that the order of the symmetry group n becomes a parameter of
the integration.

Let us consider our model in the very low-temperature region, that is point (b) of our
proof. When β → ∞, integrals (25) and (26) can be studied by a saddle-point technique.
In particular, we have that the leading asymptotic behaviour is given by the ᾱi for which is
stationary the quantity: i

∑
i ᾱi + h2 ∑

ij (L +H + iᾱ)−1
ij . Then the ᾱi satisfy the equations:

∂

∂ᾱi

[
i
∑
k

ᾱk + h2
∑
kj

(L +H + iᾱ)−1
kj

]
= 0 ∀i (29)

where ᾱij = ᾱiδij . In appendix A we will show that conditions (29) are satisfied for all values
of h � 0 if and only if ᾱi = 0 ∀ i. Now we can separate integrals (25) and (26) into two parts:
one is given by the integration in a small region 5 around the stationary point ᾱi (the leading
contribution) and the other is the integration over the complement of 5. The latter vanishes
for β → ∞. We obtain

Mr(h) = 1

Z′

∫
5

Re[dµβ,h(α)]
h

No,r

∑
kj

(L +H + iα)−1
kj + o(1/β) (30)

1 = 1

Z′

∫
5

Re[dµβ,h(α)]

[
n

βNo,r

Tr(L +H + iα)−1 +
h2

No,r

∑
ij

(L +H + iα)−2
ij

]
+ o(1/β)

(31)

where 5 is the region around the saddle point ᾱi in which Re(exp(iSβh(α))) > 0 and
Z′ = ∫

5
Re[dµβ,h(α)]. Here we have exploited the fact that, since the measure dµβ,h(α)

is real and positive at the stationary point ᾱi , the imaginary part of dµβ,h(α) gives a subleading
contribution to integrals (30) and (31). Now M(h) and 1 are real quantities so we have

Mr(h) = 1

Z′

∫
5

Re[dµβ,h(α)]
h

No,r

Re

[∑
kj

(L +H + iα)−1
kj

]
+ o(1/β) (32)

1 = 1

Z′

∫
5

Re[dµβ,h(α)] Re

[
n

βNo,r

Tr(L +H + iα)−1 +
h2

No,r

∑
ij

(L +H + iα)−2
ij

]
+ o(1/β).

(33)

As for (c) we introduce on a finite graph the following inequalities which will be proven
in appendix B exploiting the boundedness and the non-negativity of the Laplacian operator:

Re

[
h

∑
ij

(L +H + iα)−1
ij

]
� Re

[
h2

∑
ij

(L +H + iα)−2
ij

]
(34)

Re[Tr(L +H + iα)−1] � Tr(L +H)−1. (35)

In (32) and (33) the measure is positive definite and therefore we can use (34) to compare
integrals (32) and (33), obtaining

Mr(h) � 1

Z′

∫
5

Re[dµβ,h(α)] Re

[
h2

No,r

∑
ij

(L +H + iα)−2
ij

]
+ o(1/β)

� 1 − o(1/β) − 1

Z′

∫
5

Re[dµβ,h(α)] Re

[
n

βNo,r

Tr(L +H + iα)−1

]
. (36)
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Using (35), we obtain for Mr(h) the following inequality:

Mr(h) � 1 − o(1/β) − 1

βNo,r

Tr(L +H)−1. (37)

Inequality (37) holds on the finite subgraph So,r and at this step we can take the thermodynamic
limit, letting r → ∞:

lim
r→∞Mr(h) � 1 − o(1/β) − 1

β
Tr(L +H)−1. (38)

Finally, we consider the limit h → 0 and, exploiting properties (14) of pure TOA graphs, we
obtain

lim
h→0

M(h) � 1 − v

β
− o(1/β). (39)

This inequality gives the lower magnetization bound for pure TOA graphs.

5. The mixed TOA case

Let us now consider an O(n) model defined on a mixed TOA graph. In this case the
graph G can be decomposed into a pure TOA subgraph S, therefore satisfying the infrared
boundedness condition (14), and its complement S̄, which is a ROA graph. Exploiting the
property |∂(S, S̄)| = 0, in appendix C is proven for the free energy per site f that

f = |S|fS + |S̄|fS̄ (40)

where fS is the free energy of theO(n)model defined on the graph S by the interaction matrix:

J S
ij = J S

ji =
{
Jij if (i, j) ∈ S and i, j ∈ S

0 otherwise
(41)

and fS̄ is the analogous quantity defined on S̄. Equation (40) is very general and it is
fundamental to show that all the thermodynamic properties of models defined on subgraphs
separated by zero measure boundary are completely independent. From (40) we obtain for the
magnetization

M(h) = −∂f

∂h
= −|S|∂fS

∂h
− |S̄|∂fS̄

∂h
= |S|MS + |S̄|MS̄ (42)

where MS and MS̄ are the magnetizations of the models defined on S and S̄. From Griffith’s
inequalities [12] we have that MS̄ � 0 and then

M(h) � |S|MS . (43)

Now, MS is the magnetization of an O(n) model defined on a pure TOA graph and therefore
the inequality (39) holds. We then obtain

lim
h→0

M(h) � |S| − v′

β
− o(1/β). (44)

Since S is a positive measure subgraph, equation (44) proves the lower bound on M(h) for a
generic TOA graph.
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Appendix A. The saddle-point condition

Let us now prove that the saddle-point conditions (29) are satisfied for each i only if αk = 0 ∀k.
Here i ∈ So,r and Lij is the restriction of the Laplacian to the Van Hove sphere So,r .

Taking in (29) the derivative with respect αi , we obtain

i − ih2
∑
klmj

(L +H + iᾱ)−1
kl δliδm,i(L +H + iᾱ)−1

mj = 0 (A1)

where we used the fact that ∂(ᾱlm)/∂ᾱi = δliδmi . Then we have

1 = h2
∑
kj

(L +H + iᾱ)−1
ki (L +H + iᾱ)−1

ij =
(
h

∑
k

(L +H + iᾱ)−1
ki

)2

. (A2)

Taking the square roots:

±1 = h
∑
k

(L +H + iᾱ)−1
ki (A3)

since only the choice of the sign + in each equation gives a solution with real αi , we obtain

1 = h
∑
k

(L +H + iᾱ)−1
ki . (A4)

Now (A4) must hold for all i ∈ So,r so we have that condition (A4) is equivalent to∑
i

(L + iᾱ +H)ij = h
∑
ki

(L +H + iᾱ)−1
ki (L +H + iᾱ)ij ∀j ∈ So,r . (A5)

Since
∑

i Lij = 0,
∑

i ᾱij = ᾱj and
∑

i Hij = h, we have

h + iᾱj = h
∑
k

δkj = h ∀j ∈ So,r . (A6)

Therefore, equation (29) is satisfied for all i if and only if ᾱj = 0 for all j . This proves the
saddle-point condition.

Appendix B. Inequalities

Here, we give the full proof of inequalities (34) and (35). More generally we will show that the
following inequalities hold for any finite graphs, with Hij ≡ h δij , h > 0, α ≡ αi δij , αi ∈ R

and φi ∈ R ∀i:
0 � Re

(∑
ij

φi(L +H + iα)−1
ij φj

)
�

∑
ij

φi(L +H)−1
ij φj � h−1

∑
i

φ2
i (B7)

Im

(∑
ij

φi(L +H + iα)−1
ij φj

)
� 1

2

∑
ij

φi(L +H)−1
ij φj (B8)

Re

(
h2

∑
ij

(L +H + iα)−2
ij φiφj

)
� Re

(
h

∑
ij

(L +H + iα)−1
ij φiφj

)
(B9)

0 � h
∑
ikj

φi(L +H − iα)−1
ik (L +H + iα)−1

kj φj � Re

(∑
ij

φi(L +H + iα)−1
ij φj

)
. (B10)

When evaluating (B9) for φi = 1∀i we obtain inequality (34), while by considering (B7)
with φi = 1 for i = k and φi = 0 for i �= k, we have

Re(L +H + iα)−1
kk � (L +H)−1

kk .
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Now we can sum this expression over all possible k obtaining inequality (35):

Re(Tr(L +H + iα)−1) =
∑
k

Re(L +H + iα)−1
kk �

∑
k

(L +H)−1
kk = Tr(L +H)−1.

In order to prove inequalities (B7)–(B10)we first introduce theN -dimensional space given
by vectors 〈φ| = (φ1, . . . , φN) and |φ〉 = (φ1, . . . , φN)

t with scalar product

〈φ|ψ〉 =
∑
i

φiψi. (B11)

The matrices L, A, h and α are operator on this space. Since the matrix L is diagonalizable by
a real transformation, and its spectrum l is positive: 0 � l � lmax, it can be proven [13] that it
exist a real operator B which satisfies the following:

Bt(L +H)B = I BtαB = c (B12)

where c is a real diagonal operator (cij = ciδij ) and I is the identity operator. Furthermore,
we have

(L +H + iα)−1 = B(1 + ic)−1Bt (L +H)−1 = BBt (B13)

‖BtB‖ = 1

h
(B14)

where

‖BtB‖ = sup
φ

〈φ|BtB|φ〉
〈φ|φ〉 .

Properties (B13) directly follow from (B12). Therefore, it is easy to obtain the exact expression
for B:

B = TAT ′

where T is the orthogonal transformation that diagonalize L; A is the transformation
(1/

√
lk + h)δkm where lk is the eigenvalue of L relative to the eigenvector k; finally T ′ is the

orthogonal operator that diagonalize the symmetric matrix AT tαT A. B is not an orthogonal
transformation but its norm can be computed, proving (B14):

‖BtB‖ = sup
φ

〈φ|BtB|φ〉
〈φ|φ〉 = sup

φ

〈φ|A2|φ〉
〈φ|φ〉 = 1

h
.

Let us consider the product 〈φ|(L+H +iα)−1|φ〉. Exploiting property (B13) and inequality
(1 + c2i )

−1 � 1 we have

Re〈|φ(L +H + iα)−1|φ〉 = Re〈φ|B(1 + ic)−1Bt |φ〉
= 〈φ|(B Re(1 + ic)−1Bt)|φ〉
= 〈φ|B(1 + c2)−1Bt |φ〉
� 〈φ|BBt |φ〉.

Now since 0 � 〈φ|B(1 + c2)−1Bt |φ〉, 〈φ|(L + H)−1|φ〉 = 〈φ|BBt |φ〉 (equation (B13)) and
〈φ|BBt |φ〉 � h−1〈φ|φ〉 (equation (B14)), we obtain

0 � Re〈|φ(L +H + iα)−1|φ〉 � 〈φ|(L +H)−1|φ〉 � h−1〈φ|φ〉
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which corresponds to (B7). In an analogous way, for the imaginary part we obtain (B8):

| Im〈|φ(L +H + iα)−1|φ〉| = |〈φ|Bc(1 + c2)−1Bt |φ〉|
� 〈φ|B|c|(1 + c2)−1Bt |φ〉
� 1

2 〈φ|BBt |φ〉
� 1

2 〈φ|(L +H)−1|φ〉
where we used the inequality |ci |(1 + c2i )

−1 � 1
2 . For the proof of (B9) we have

Re〈φ|h2(L +H + iα)−2|φ〉 = Re h2〈φ|B(1 + ic)−1BtB(1 + ic)−1Bt |φ〉
= h2〈φ|B(Re(1 + ic)−1)BtB(Re(1 + ic)−1)Bt |φ〉

−h2〈φ|B(Im(1 + ic)−1)BtB(Im(1 + ic)−1)Bt |φ〉
� h2〈φ|B(Re(1 + ic)−1)BtB(Re(1 + ic)−1)Bt |φ〉
� h〈φ|B(Re(1 + ic)−1)(Re(1 + ic)−1)Bt |φ〉
� h〈φ|B(1 + c2)−2Bt |φ〉
� h〈φ|B(1 + c2)−1Bt |φ〉 = h〈φ|(L +H)−1|φ〉

where we used properties (B13), (B14) and (1 + c2i )
−2 � (1 + c2i )

−1. Finally, to obtain (B10)
we have

0 � h〈φ|(L +H − iα)−1(L +H + iα)−1|φ〉 = h〈φ|B(1 − ic)−1BtB(1 + ic)−1Bt |φ〉
� 〈φ|B(1 − ic)−1(1 + ic)−1Bt |φ〉
� 〈φ|B(1 + c2)−1Bt |φ〉 = Re〈φ|(L +H + iα)−1|φ〉

and this completes the proof of inequalities (B7)–(B10).

Appendix C. Separability and the additivity of the free energy

In this last appendix we will prove the property (40) for the free energy of an O(n) model
when the complementary subgraphs S and S̄ are connected by a zero-measure border ∂(S, S̄).

From the definition of the free energy (19) we have that

fG − |S|fS − |S̄|fS̄ = lim
r→∞

1

βNo,r

× ln

∫ ∏
i∈So,r

d�σi δ(�σ 2
i − 1) exp

(−β(Hr,S + Hr,S̄ +
∑

(i,j)∈So,r∩∂(S,S̄) Jij σi · σj )
)

∫ ∏
i∈So,r

d�σi δ(�σ 2
i − 1) exp(−β(Hr,S + Hr,S̄))

= lim
r→∞

1

βNo,r

ln

〈
exp

(
−β

∑
(i,j)∈So,r∩∂(S,S̄)

Jij σi · σj

)〉′
(C15)

where Hr,S and Hr,S̄ are the restrictions of H to the intersections of So,r with S and S̄ and
〈 〉′ is an average taken with respect the statistical weight exp(−β(Hr,S + Hr,S̄)). Since the
symmetry group O(n) is compact (|σi · σj )| � 1) we have that

− sup
(i,j)

Jij |∂(S, S̄)|r �
∑

(i,j)∈So,r∩∂(S,S̄)

Jij σi · σj � sup
(i,j)

Jij |∂(S, S̄)|r (C16)

where |∂(S, S̄)|r is the number of links of ∂(S, S̄) which belong to the Van Hove sphere So,r .
Now with (C15) and (C16) we obtain

lim
r→∞

1

βNo,r

ln
(
e−β sup(i,j) Jij |∂(S,S̄)|r ) � fG − |S|fS − |S̄|fS̄ � lim

r→∞
1

βNo,r

ln
(
eβ sup(i,j) Jij |∂(S,S̄)|r )

(C17)
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and then

lim
r→∞ −β sup

(i,j)

Jij

|∂(S, S̄)|r
No,r

� fG − |S|fS − |S̄|fS̄ � lim
r→∞β sup

(i,j)

Jij

|∂(S, S̄)|r
No,r

. (C18)

Since the measure of the boundary ∂(S, S̄) is zero we have that limr→∞ |∂(S, S̄)|r/No,r = 0
and therefore we obtain fG − |S|fS − |S̄|fS̄ = 0, that is equation (40). Notice that this result
is very general and it exploits only the fact that the symmetry group is compact and that the
interactions are bounded.

References

[1] Mermin N D and Wagner H 1966 Phys. Rev. 17 1133
[2] Mermin N D 1967 J. Math. Phys. 8 1061
[3] Froelich J, Simon B and Spencer T 1976 Phys. Rev. Lett. 36 804
[4] Froelich J, Simon B and Spencer T 1976 Commun. Math. Phys. 50 79
[5] Alexander S and Orbach R 1982 J. Physique Lett. 43 L625
[6] Hattori K, Hattori T and Watanabe H 1987 Prog. Theor. Phys. Suppl. 92 108
[7] Cassi D 1992 Phys. Rev. Lett. 68 3631

Cassi D 1996 Phys. Rev. Lett. 76 2941
[8] Merkl F and Wagner H 1994 J. Stat. Phys. 75 153
[9] Burioni R and Cassi D 1996 Phys. Rev. Lett. 76 1091

Burioni R and Cassi D 1997Mod. Phys. Lett. B 11 1095
[10] Burioni R, Cassi D and Regina S 1996Mod. Phys. Lett. B 10 1059
[11] Burioni R, Cassi D and Vezzani A submitted
[12] Glimm J and Jaffe A 1987 Quantum Physics: A Functional Integral Point of View (New York: Springer)
[13] Gantmacher R F 1959 The Theory of Matrices (New York: Chelsea)


